Data Structures and Algorithms Cheat Sheet

Learn the essential data structures and algorithms you need to know for coding interviews and software development with this comprehensive cheatsheet. 

Arrays & Strings

Stores data elements based on an sequen­tial, most commonly 0 based, index.

Time Complexity
Indexing: Linear array: O(1), Dynamic array: O(1)
Search: Linear array: O(n), Dynamic array: O(n)
Optimized Search: Linear array: O(log n), Dynamic array: O(log n)
Insertion: Linear array: n/a, Dynamic array: O(n)

Bonus:
● type[] name = {val1, val2, ...}
● Arrays.so­rt(arr) -> O(n log(n))
● Collec­tio­ns.s­or­t(list) -> O(n log(n))
● int digit = '4' - '0' -> 4
● String s = String.va­lue­Of('e') -> "e"
● (int) 'a' -> 97 (ASCII)
● new String­(char[] arr) ['a','e'] -> "ae"
● (char) ('a' + 1) -> 'b'
● Charac­ter.is­Let­ter­OrD­igi­t(char) -> true/false
● new ArrayL­ist­<>(­ano­the­rList); -> list w/ items
● StringBuilder.append(char||String)

Linked List

Stores data with nodes that point to other nodes.

Time Complexity
Indexing: O(n)
Search: O(n)
Optimized Search: O(n)
Append: O(1)
Prepend: O(1)
Insertion: O(n)

HashTable

Stores data with key-value pairs.

Time Complexity
Indexing: O(1)
Search: O(1)
Insertion: O(1)

Bonus:
● {1, -1, 0, 2, -2} into map
HashMap {-1, 0, 2, 1, -2} -> any order
Linked­HashMap {1, -1, 0, 2, -2} -> insertion order
TreeMap {-2, -1, 0, 1, 2} -> sorted
● Set doesn't allow duplicates.
● map.ge­tOr­Def­aul­tVa­lue­(key, default value)

Stack/­Que­ue/­Deque

StackQueueDequeHeap
Last In First OutFirst In Last OutProvides first/lastAscending Order
push(val)
pop()
peek()
 
offer(val)
poll()
peek()
 
offer(val)
poll()
peek()
 
offer(val)
poll()
peek()

Implem­ent­ation in Java:
● Stack<­E> stack = new Stack();
● Queue<­E> queue = new Linked­List();
● Deque<­E> deque = new Linked­List();
● Priori­tyQ­ueu­e<E> pq = new Priori­tyQ­ueue();

DFS & BFS Big O Notation

TimeSpace 
DFSO(E+V)
BFSO(E+V)

V & E -> where V is the number of vertices and E is the number of edges.
Height -> where h is the maximum height of the tree.
Length -> where l is the maximum number of nodes in a single level.

DFS vs BFS

DFSBFS
●Better when target is closer to Source.
●Stack -> LIFO
●Preorder, Inorder, Postorder Search
●Goes deep
●Recursive
●Fast
 
●Better when target is far from Source.
●Queue -> FIFO
●Level Order Search
●Goes wide
●Iterative
●Slow

BFS Impl for Graph

public boolean connected(int[][] graph, int start, int end) {
  Set<Integer> visited = new HashSet<>();
  Queue<Integer> toVisit = new LinkedList<>();
  toVisit.enqueue(start);
  while (!toVisit.isEmpty()) {
  	  int curr = toVisit.dequeue();
  	  if (visited.contains(curr)) continue;
  	  if (curr == end) return true;
  	  for (int i : graph[start]) {
     toVisit.enqueue(i);
   }
  	  visited.add(curr);
   }
  return false;
}

DFS Impl for Graph

public boolean connected(int[][] graph, int start, int end) {
  Set<Integer> visited = new HashSet<>();
  return connected(graph, start, end, visited);
}


private boolean connected(int[][] graph, int start, int end, Set<Integer> visited) {
  if (start == end) return true;
  if (visited.contains(start)) return false;
  visited.add(start);
  for (int i : graph[start]) {
    if (connected(graph, i, end, visited)) {
      return true;
    }
  }
  return false;
}

BFS Impl. for Level-­order Tree Traversal

private void printLevelOrder(TreeNode root) {
  Queue<TreeNode> queue = new LinkedList<>();
  queue.offer(root);
  while (!queue.isEmpty()) {
    TreeNode tempNode = queue.poll();
    print(tempNode.data + " ");
 
    //add left child
    if (tempNode.left != null) {
       queue.offer(tempNode.left);
    }
 
    //add right right child
    if (tempNode.right != null) {
       queue.offer(tempNode.right);
    }
  }
}

DFS Impl. for In-order Tree Traversal

private void inorder(TreeNode TreeNode) {
    if (TreeNode == null)
        return;

    // Traverse left
    inorder(TreeNode.left);

    // Traverse root
    print(TreeNode.data + " ");

    // Traverse right
    inorder(TreeNode.right);
}

Dynamic Progra­mming

● Dynamic progra­mming is the technique of storing repeated comput­ations in memory, rather than recomp­uting them every time you need them.
● The ultimate goal of this process is to improve runtime.
● Dynamic progra­mming allows you to use more space to take less time.

Dynamic Progra­mming Patterns

- Minimum (Maximum) Path to Reach a Target

Approach:
Choose minimum (maximum) path among all possible paths before the current state, then add value for the current state.
Formula:
routes[i] = min(ro­ute­s[i-1], routes­[i-2], ... , routes­[i-k]) + cost[i]

- Distinct Ways

Approach:
Choose minimum (maximum) path among all possible paths before the current state, then add value for the current state.
Formula:
routes[i] = routes­[i-1] + routes­[i-2], ... , + routes­[i-k]

- Merging Intervals

Approach:
Find all optimal solutions for every interval and return the best possible answer
Formula:
dp[i][j] = dp[i][k] + result[k] + dp[k+1][j]

- DP on Strings

Approach:
Compare 2 chars of String or 2 Strings. Do whatever you do. Return.
Formula:
if s1[i-1] == s2[j-1] then dp[i][j] = //code.
Else dp[i][j] = //code

- Decision Making

Approach:
If you decide to choose the current value use the previous result where the value was ignored; vice-v­ersa, if you decide to ignore the current value use previous result where value was used.
Formula:
dp[i][j] = max({d­p[i­][j], dp[i-1][j] + arr[i], dp[i-1­][j­-1]});
dp[i][j-1] = max({d­p[i­][j-1], dp[i-1­][j-1] + arr[i], arr[i]});

Binary Search Big O Notation

TimeSpace
Binary SearchO(log n)

Binary Search - Recursive

public int binarySearch(int search, int[] array, int start, int end) {
   int middle = start + ((end - start) / 2);
   if(end < start) {
      return -1;
   } 

   if (search == array[middle]) {
      return middle; 
   } else if (search < array[middle]) {
      return binarySearch(search, array, start, middle - 1);
   } else {
      return binarySearch(search, array, middle + 1, end);
   }
}

Binary Search - Iterative

public int binarySearch(int target, int[] array) {
   int start = 0;
   int end = array.length - 1;
   while (start <= end) {
      int middle = start + ((end - start) / 2);
      if (target == array[middle]) {
          return target;
      } else if (search < array[middle]) {
          end = middle - 1;
      } else {
          start = middle + 1;
      }
   }
   return -1;
}

Bit Manipu­lation

Sign Bit0 -> Positive, 1 -> Negative
AND0 & 0 -> 0
0 & 1 -> 0
1 & 1 -> 1
OR0 | 0 -> 0
0 | 1 -> 1
1 | 1 -> 1
XOR0 ^ 0 -> 0
0 ^ 1 -> 1
1 ^ 1 -> 0
INVERT~ 0 -> 1
~ 1 -> 0

Bonus:
Shifting
- Left Shift
0001 << 0010 (Multiply by 2)
- Right Shift
0010 >> 0001 (Division by 2)

● Count 1's of n, Remove last bit
n = n & (n-1);
● Extract last bit
n&-n or n&­~(n-1) or n^(n&­(n-1))
● n ^ n -> 0
● n ^ 0 -> n

Sorting Big O Notation


Best
AverageSpace
Merge SortO(n log(n))O(n log(n))
Heap SortO(n log(n))O(n log(n))
Quick SortO(n log(n))O(n log(n))
Insertion SortO(n)O(n^2)
Selection SortO(n^2)O(n^2)
Bubble SortO(n)O(n^2)

Merge Sort

private void mergesort(int low, int high) {
         if (low < high) {
                 int middle = low + (high - low) / 2;
                 mergesort(low, middle);
                 mergesort(middle + 1, high);
                 merge(low, middle, high);
           }
 }

private void merge(int low, int middle, int high) {
          for (int i = low; i <= high; i++) {
                 helper[i] = numbers[i];
         }
          int i = low;
         int j = middle + 1;
         int k = low;
         while (i <= middle && j <= high) {
               if (helper[i] <= helper[j]) {
                     numbers[k] = helper[i];
                    i++;
              } else {
                     numbers[k] = helper[j];
                     j++;
               }
               k++;
         }
         while (i <= middle) {
               numbers[k] = helper[i];
               k++;
                i++;
          }
     }

Quick Sort

private void quicksort(int low, int high) {
         int i = low, j = high;
         int pivot = numbers[low + (high-low)/2];
         while (i <= j) {
                 while (numbers[i] < pivot) {
                       i++;
                 }
                 while (numbers[j] > pivot) {
                        j--;
                  }
                   if (i <= j) {
                       exchange(i, j);
                       i++;
                       j--;
                  }
         }
          if (low < j)
                 quicksort(low, j);
         if (i < high)
                 quicksort(i, high);
     }

Insertion Sort

void insertionSort(int arr[]) {
  int n = arr.length;
  for (int i = 1; i < n; ++i) {
      int key = arr[i];
      int j = i - 1;
      while (j >= 0 && arr[j] > key) {
           arr[j + 1] = arr[j];
           j = j - 1;
      }
      arr[j + 1] = key;
   }
}

Combin­ations Backtrack Pattern

- Combination
public List<List<Integer>> combinationSum(int[] nums, int target) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, target, 0);
    return list;
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
    if(remain < 0) return;
    else if(remain == 0) list.add(new ArrayList<>(tempList));
    else{ 
        for(int i = start; i < nums.length; i++){
            tempList.add(nums[i]);
            // not i + 1 because we can reuse same elements
            backtrack(list, tempList, nums, remain - nums[i], i); 
            // not i + 1 because we can reuse same elements
            tempList.remove(tempList.size() - 1);
        }
    }
}

Palindrome Backtrack Pattern

- Palindrome Partitioning
public List<List<String>> partition(String s) {
   List<List<String>> list = new ArrayList<>();
   backtrack(list, new ArrayList<>(), s, 0);
   return list;
}

public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){
   if(start == s.length())
      list.add(new ArrayList<>(tempList));
   else{
      for(int i = start; i < s.length(); i++){
         if(isPalindrome(s, start, i)){
            tempList.add(s.substring(start, i + 1));
            backtrack(list, tempList, s, i + 1);
            tempList.remove(tempList.size() - 1);
         }
      }
   }
}

Subsets Backtrack Pattern

- Subsets
public List<List<Integer>> subsets(int[] nums) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, 0);
    return list;
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){
    list.add(new ArrayList<>(tempList));
    for(int i = start; i < nums.length; i++){
        // skip duplicates 
        if(i > start && nums[i] == nums[i-1]) continue;
        // skip duplicates 
        tempList.add(nums[i]);
        backtrack(list, tempList, nums, i + 1);
        tempList.remove(tempList.size() - 1);
    }
}

Permut­ations Backtrack Pattern

- Permutations
public List<List<Integer>> permute(int[] nums) {
   List<List<Integer>> list = new ArrayList<>();
   // Arrays.sort(nums); // not necessary
   backtrack(list, new ArrayList<>(), nums);
   return list;
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){
   if(tempList.size() == nums.length){
      list.add(new ArrayList<>(tempList));
   } else{
      for(int i = 0; i < nums.length; i++){ 
         // element already exists, skip
         if(tempList.contains(nums[i])) continue;
         // element already exists, skip 
         tempList.add(nums[i]);
         backtrack(list, tempList, nums);
         tempList.remove(tempList.size() - 1);
      }
   }
}

#datastructures #algorithms #dsa

Data Structures and Algorithms Cheat Sheet
11.75 GEEK