Learn the essential data structures and algorithms you need to know for coding interviews and software development with this comprehensive cheatsheet.
Stores data elements based on an sequential, most commonly 0 based, index.
Time Complexity
● Indexing: Linear array: O(1), Dynamic array: O(1)
● Search: Linear array: O(n), Dynamic array: O(n)
● Optimized Search: Linear array: O(log n), Dynamic array: O(log n)
● Insertion: Linear array: n/a, Dynamic array: O(n)
Bonus:
● type[] name = {val1, val2, ...}
● Arrays.sort(arr) -> O(n log(n))
● Collections.sort(list) -> O(n log(n))
● int digit = '4' - '0' -> 4
● String s = String.valueOf('e') -> "e"
● (int) 'a' -> 97 (ASCII)
● new String(char[] arr) ['a','e'] -> "ae"
● (char) ('a' + 1) -> 'b'
● Character.isLetterOrDigit(char) -> true/false
● new ArrayList<>(anotherList); -> list w/ items
● StringBuilder.append(char||String)
Stores data with nodes that point to other nodes.
Time Complexity
● Indexing: O(n)
● Search: O(n)
● Optimized Search: O(n)
● Append: O(1)
● Prepend: O(1)
● Insertion: O(n)
Stores data with key-value pairs.
Time Complexity
● Indexing: O(1)
● Search: O(1)
● Insertion: O(1)
Bonus:
● {1, -1, 0, 2, -2} into map
HashMap {-1, 0, 2, 1, -2} -> any order
LinkedHashMap {1, -1, 0, 2, -2} -> insertion order
TreeMap {-2, -1, 0, 1, 2} -> sorted
● Set doesn't allow duplicates.
● map.getOrDefaultValue(key, default value)
Stack | Queue | Deque | Heap |
Last In First Out | First In Last Out | Provides first/last | Ascending Order |
push(val) pop() peek() | offer(val) poll() peek() | offer(val) poll() peek() | offer(val) poll() peek() |
Implementation in Java:
● Stack<E> stack = new Stack();
● Queue<E> queue = new LinkedList();
● Deque<E> deque = new LinkedList();
● PriorityQueue<E> pq = new PriorityQueue();
Time | Space |
DFS | O(E+V) |
BFS | O(E+V) |
V & E -> where V is the number of vertices and E is the number of edges.
Height -> where h is the maximum height of the tree.
Length -> where l is the maximum number of nodes in a single level.
DFS | BFS |
●Better when target is closer to Source. ●Stack -> LIFO ●Preorder, Inorder, Postorder Search ●Goes deep ●Recursive ●Fast | ●Better when target is far from Source. ●Queue -> FIFO ●Level Order Search ●Goes wide ●Iterative ●Slow |
public boolean connected(int[][] graph, int start, int end) {
Set<Integer> visited = new HashSet<>();
Queue<Integer> toVisit = new LinkedList<>();
toVisit.enqueue(start);
while (!toVisit.isEmpty()) {
int curr = toVisit.dequeue();
if (visited.contains(curr)) continue;
if (curr == end) return true;
for (int i : graph[start]) {
toVisit.enqueue(i);
}
visited.add(curr);
}
return false;
}
public boolean connected(int[][] graph, int start, int end) {
Set<Integer> visited = new HashSet<>();
return connected(graph, start, end, visited);
}
private boolean connected(int[][] graph, int start, int end, Set<Integer> visited) {
if (start == end) return true;
if (visited.contains(start)) return false;
visited.add(start);
for (int i : graph[start]) {
if (connected(graph, i, end, visited)) {
return true;
}
}
return false;
}
private void printLevelOrder(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode tempNode = queue.poll();
print(tempNode.data + " ");
//add left child
if (tempNode.left != null) {
queue.offer(tempNode.left);
}
//add right right child
if (tempNode.right != null) {
queue.offer(tempNode.right);
}
}
}
private void inorder(TreeNode TreeNode) {
if (TreeNode == null)
return;
// Traverse left
inorder(TreeNode.left);
// Traverse root
print(TreeNode.data + " ");
// Traverse right
inorder(TreeNode.right);
}
● Dynamic programming is the technique of storing repeated computations in memory, rather than recomputing them every time you need them.
● The ultimate goal of this process is to improve runtime.
● Dynamic programming allows you to use more space to take less time.
- Minimum (Maximum) Path to Reach a Target
Approach:
Choose minimum (maximum) path among all possible paths before the current state, then add value for the current state.
Formula:
routes[i] = min(routes[i-1], routes[i-2], ... , routes[i-k]) + cost[i]
- Distinct Ways
Approach:
Choose minimum (maximum) path among all possible paths before the current state, then add value for the current state.
Formula:
routes[i] = routes[i-1] + routes[i-2], ... , + routes[i-k]
- Merging Intervals
Approach:
Find all optimal solutions for every interval and return the best possible answer
Formula:
dp[i][j] = dp[i][k] + result[k] + dp[k+1][j]
- DP on Strings
Approach:
Compare 2 chars of String or 2 Strings. Do whatever you do. Return.
Formula:
if s1[i-1] == s2[j-1] then dp[i][j] = //code.
Else dp[i][j] = //code
- Decision Making
Approach:
If you decide to choose the current value use the previous result where the value was ignored; vice-versa, if you decide to ignore the current value use previous result where value was used.
Formula:
dp[i][j] = max({dp[i][j], dp[i-1][j] + arr[i], dp[i-1][j-1]});
dp[i][j-1] = max({dp[i][j-1], dp[i-1][j-1] + arr[i], arr[i]});
Time | Space |
Binary Search | O(log n) |
public int binarySearch(int search, int[] array, int start, int end) {
int middle = start + ((end - start) / 2);
if(end < start) {
return -1;
}
if (search == array[middle]) {
return middle;
} else if (search < array[middle]) {
return binarySearch(search, array, start, middle - 1);
} else {
return binarySearch(search, array, middle + 1, end);
}
}
public int binarySearch(int target, int[] array) {
int start = 0;
int end = array.length - 1;
while (start <= end) {
int middle = start + ((end - start) / 2);
if (target == array[middle]) {
return target;
} else if (search < array[middle]) {
end = middle - 1;
} else {
start = middle + 1;
}
}
return -1;
}
Sign Bit | 0 -> Positive, 1 -> Negative |
AND | 0 & 0 -> 0 0 & 1 -> 0 1 & 1 -> 1 |
OR | 0 | 0 -> 0 0 | 1 -> 1 1 | 1 -> 1 |
XOR | 0 ^ 0 -> 0 0 ^ 1 -> 1 1 ^ 1 -> 0 |
INVERT | ~ 0 -> 1 ~ 1 -> 0 |
Bonus:
● Shifting
- Left Shift
0001 << 0010 (Multiply by 2)
- Right Shift
0010 >> 0001 (Division by 2)
● Count 1's of n, Remove last bit
n = n & (n-1);
● Extract last bit
n&-n or n&~(n-1) or n^(n&(n-1))
● n ^ n -> 0
● n ^ 0 -> n
Best | Average | Space |
Merge Sort | O(n log(n)) | O(n log(n)) |
Heap Sort | O(n log(n)) | O(n log(n)) |
Quick Sort | O(n log(n)) | O(n log(n)) |
Insertion Sort | O(n) | O(n^2) |
Selection Sort | O(n^2) | O(n^2) |
Bubble Sort | O(n) | O(n^2) |
private void mergesort(int low, int high) {
if (low < high) {
int middle = low + (high - low) / 2;
mergesort(low, middle);
mergesort(middle + 1, high);
merge(low, middle, high);
}
}
private void merge(int low, int middle, int high) {
for (int i = low; i <= high; i++) {
helper[i] = numbers[i];
}
int i = low;
int j = middle + 1;
int k = low;
while (i <= middle && j <= high) {
if (helper[i] <= helper[j]) {
numbers[k] = helper[i];
i++;
} else {
numbers[k] = helper[j];
j++;
}
k++;
}
while (i <= middle) {
numbers[k] = helper[i];
k++;
i++;
}
}
private void quicksort(int low, int high) {
int i = low, j = high;
int pivot = numbers[low + (high-low)/2];
while (i <= j) {
while (numbers[i] < pivot) {
i++;
}
while (numbers[j] > pivot) {
j--;
}
if (i <= j) {
exchange(i, j);
i++;
j--;
}
}
if (low < j)
quicksort(low, j);
if (i < high)
quicksort(i, high);
}
void insertionSort(int arr[]) {
int n = arr.length;
for (int i = 1; i < n; ++i) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
- Combination
public List<List<Integer>> combinationSum(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, 0);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < 0) return;
else if(remain == 0) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
// not i + 1 because we can reuse same elements
backtrack(list, tempList, nums, remain - nums[i], i);
// not i + 1 because we can reuse same elements
tempList.remove(tempList.size() - 1);
}
}
}
- Palindrome Partitioning
public List<List<String>> partition(String s) {
List<List<String>> list = new ArrayList<>();
backtrack(list, new ArrayList<>(), s, 0);
return list;
}
public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){
if(start == s.length())
list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < s.length(); i++){
if(isPalindrome(s, start, i)){
tempList.add(s.substring(start, i + 1));
backtrack(list, tempList, s, i + 1);
tempList.remove(tempList.size() - 1);
}
}
}
}
- Subsets
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, 0);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
// skip duplicates
if(i > start && nums[i] == nums[i-1]) continue;
// skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + 1);
tempList.remove(tempList.size() - 1);
}
}
- Permutations
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
// Arrays.sort(nums); // not necessary
backtrack(list, new ArrayList<>(), nums);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = 0; i < nums.length; i++){
// element already exists, skip
if(tempList.contains(nums[i])) continue;
// element already exists, skip
tempList.add(nums[i]);
backtrack(list, tempList, nums);
tempList.remove(tempList.size() - 1);
}
}
}
#datastructures #algorithms #dsa