What is TribeOne (HAKA) | What is TribeOne token | What is HAKA token

In this article, we’ll discuss information about the TribeOne project and HAKA token

NFT, An enormous alliance between the art and cryptocurrency ecosystem that is redefining the concept of ownership in the digital age.

The Non-Fungible Token is a unit of data stored on a digital ledger, called a blockchain, that certifies a digital asset to be unique and therefore not interchangeable. It can be used to represent items such as photos, videos, audio and other types of digital files.

Most importantly, NFTs make digital artworks unique and impossible to replicate therefore making it profitable. Now, artists, musicians, influencers, and sports franchises are using NFTs to monetize digital goods that have previously been inexpensive or free of charge. The technology also responds to the art world’s need for authentication and provenance in an increasingly digital world, permanently linking a digital file to its creator.

NFTs are currently taking the digital art and collectibles space by the storm. Digital artists are witnessing their lives change due to the new crypto-audience. Now it aspires to redefine the DeFi space by its immeasurable worth and profitable features.

NFTs have become one of the most revolutionary crypto-used cases of 2021, with overall sales up to 55% since 2020, from $250 million to $389 million. As of March 2021, it had further exponential growth and is estimated to mark at $6B by the end of the year.’

This incredibly growing NFT movement is indicative of a larger token revolution that will fuel massive innovation and growth in the Web 3.0 protocols.

Apart from evolving upon what the crypto ecosystem calls “over-collateralization”, TribeOne’s fundamental belief is that the NFT market is and will continue to expand in the years to come.

TribeOne Glossary Terms

TribeOne aims to create a tightly-knit community within the global blockchain ecosystem. In order to do that, it is of paramount importance that all crypto users know exactly what we mean, even on technical documents such as our whitepaper. That is why we have compiled a glossary for your convenience so that users may refer to it in order to understand any terms.

  1. DeFi- Decentralized finance is a system wherein traditional financial instruments do not rely on central financial intermediaries such as brokerages, exchanges, or banks to offer traditional financial instruments and instead utilizes smart contracts on blockchain technology.
  2. Smart contract- An embedded agreement within the code of a transaction between buyer and seller, usually in blockchain transactions.
  3. LTV ratio — Loan-to-value ratio: It measures the relationship between the loan amount and the market value of the asset securing the loan.
  4. APY — The annual percentage yield is the real rate of return earned on a savings deposit or investment, taking into account the effect of compounding interest.
  5. DApp — Decentralized applications are digital applications or programs that exist and run on a blockchain or P2P network of computers instead of a single computer and are outside the purview and control of a single authority.
  6. NFT- Non-fungible tokens are digital assets created to track ownership of a virtual item using blockchain technology. Each NFT can represent a unique digital item, and thus they are not interchangeable.
  7. Liquidity- liquidity is the ability of a coin to be easily converted into cash or other coins.
  8. Yield farming- Yield farming is the practice of staking or lending crypto assets to generate high returns or rewards in the form of additional cryptocurrency.
  9. Non-custodial- Virtually all DeFi lending protocols do not require users to transfer ownership of their underlying assets. This means they can come and go as they please without any guidance or approval from a third party.
  10. RAROC- Risk-Adjusted Returns On Crypto is a profitability measurement framework that analyses risk-adjusted financial performance.
  11. Forced Liquidation- Forced liquidation means that the selling of loan position happens automatically when the smart contract meets certain conditions.
  12. Permissionless- Permissionless is often used when describing blockchain technologies because anyone can download the digital record known as the blockchain and participate in the recording and verifying information.
  13. Collateral- Collateral is something set against a loan as security.
  14. Mortgage-** Mortgage** is a loan that a borrower uses by providing collateral and pays it back in installment.
  15. Staking- Staking is when a person locks their capital investment for a period of time to earn interest.
  16. Stop-loss insurance- A policy that protects insurance companies from large claims
  17. Token burn- When tokens are removed from circulation to regulate prices
  18. Tokens- Tokens are used to raise funds for the cryptocurrency and can be used to purchase products from the issuer.
  19. Risk Mitigation — Risk mitigation is the identification, evaluation, and prioritization of risks to minimize, monitor, and control the probability or impact of unfortunate events.
  20. Peer-to-peer finance- P2P in finance is matching lenders with borrowers.

How and Where to Buy HAKA token ?

HAKA has been listed on a number of crypto exchanges, unlike other main cryptocurrencies, it cannot be directly purchased with fiats money. However, You can still easily buy this coin by first buying Bitcoin, ETH, USDT, BNB from any large exchanges and then transfer to the exchange that offers to trade this coin, in this guide article we will walk you through in detail the steps to buy HAKA token.

You will have to first buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

We will use Binance Exchange here as it is one of the largest crypto exchanges that accept fiat deposits.

Binance is a popular cryptocurrency exchange which was started in China but then moved their headquarters to the crypto-friendly Island of Malta in the EU. Binance is popular for its crypto to crypto exchange services. Binance exploded onto the scene in the mania of 2017 and has since gone on to become the top crypto exchange in the world.

Once you finished the KYC process. You will be asked to add a payment method. Here you can either choose to provide a credit/debit card or use a bank transfer, and buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

SIGN UP ON BINANCE

Step by Step Guide : What is Binance | How to Create an account on Binance (Updated 2021)

Next step - Transfer your cryptos to an Altcoin Exchange

Once finished you will then need to make a BTC/ETH/USDT/BNB deposit to the exchange from Binance depending on the available market pairs. After the deposit is confirmed you may then purchase HAKA from the website: https://www.tribeone.io.

The top exchange for trading in HAKA token is currently 

Find more information HAKA

WebsiteWhitepaperSocial ChannelSocial Channel 2Social Channel 3Message Board

🔺DISCLAIMER: The Information in the post isn’t financial advice, is intended FOR GENERAL INFORMATION PURPOSES ONLY. Trading Cryptocurrency is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money.

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner

⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!

☞ **-----CLICK HERE-----**⭐ ⭐ ⭐

I hope this post will help you. Don’t forget to leave a like, comment and sharing it with others. Thank you!

#blockchain #bitcoin #tribeone #haka

What is GEEK

Buddha Community

What is TribeOne (HAKA) | What is TribeOne token | What is HAKA token

What is TribeOne (HAKA) | What is TribeOne token | What is HAKA token

In this article, we’ll discuss information about the TribeOne project and HAKA token

NFT, An enormous alliance between the art and cryptocurrency ecosystem that is redefining the concept of ownership in the digital age.

The Non-Fungible Token is a unit of data stored on a digital ledger, called a blockchain, that certifies a digital asset to be unique and therefore not interchangeable. It can be used to represent items such as photos, videos, audio and other types of digital files.

Most importantly, NFTs make digital artworks unique and impossible to replicate therefore making it profitable. Now, artists, musicians, influencers, and sports franchises are using NFTs to monetize digital goods that have previously been inexpensive or free of charge. The technology also responds to the art world’s need for authentication and provenance in an increasingly digital world, permanently linking a digital file to its creator.

NFTs are currently taking the digital art and collectibles space by the storm. Digital artists are witnessing their lives change due to the new crypto-audience. Now it aspires to redefine the DeFi space by its immeasurable worth and profitable features.

NFTs have become one of the most revolutionary crypto-used cases of 2021, with overall sales up to 55% since 2020, from $250 million to $389 million. As of March 2021, it had further exponential growth and is estimated to mark at $6B by the end of the year.’

This incredibly growing NFT movement is indicative of a larger token revolution that will fuel massive innovation and growth in the Web 3.0 protocols.

Apart from evolving upon what the crypto ecosystem calls “over-collateralization”, TribeOne’s fundamental belief is that the NFT market is and will continue to expand in the years to come.

TribeOne Glossary Terms

TribeOne aims to create a tightly-knit community within the global blockchain ecosystem. In order to do that, it is of paramount importance that all crypto users know exactly what we mean, even on technical documents such as our whitepaper. That is why we have compiled a glossary for your convenience so that users may refer to it in order to understand any terms.

  1. DeFi- Decentralized finance is a system wherein traditional financial instruments do not rely on central financial intermediaries such as brokerages, exchanges, or banks to offer traditional financial instruments and instead utilizes smart contracts on blockchain technology.
  2. Smart contract- An embedded agreement within the code of a transaction between buyer and seller, usually in blockchain transactions.
  3. LTV ratio — Loan-to-value ratio: It measures the relationship between the loan amount and the market value of the asset securing the loan.
  4. APY — The annual percentage yield is the real rate of return earned on a savings deposit or investment, taking into account the effect of compounding interest.
  5. DApp — Decentralized applications are digital applications or programs that exist and run on a blockchain or P2P network of computers instead of a single computer and are outside the purview and control of a single authority.
  6. NFT- Non-fungible tokens are digital assets created to track ownership of a virtual item using blockchain technology. Each NFT can represent a unique digital item, and thus they are not interchangeable.
  7. Liquidity- liquidity is the ability of a coin to be easily converted into cash or other coins.
  8. Yield farming- Yield farming is the practice of staking or lending crypto assets to generate high returns or rewards in the form of additional cryptocurrency.
  9. Non-custodial- Virtually all DeFi lending protocols do not require users to transfer ownership of their underlying assets. This means they can come and go as they please without any guidance or approval from a third party.
  10. RAROC- Risk-Adjusted Returns On Crypto is a profitability measurement framework that analyses risk-adjusted financial performance.
  11. Forced Liquidation- Forced liquidation means that the selling of loan position happens automatically when the smart contract meets certain conditions.
  12. Permissionless- Permissionless is often used when describing blockchain technologies because anyone can download the digital record known as the blockchain and participate in the recording and verifying information.
  13. Collateral- Collateral is something set against a loan as security.
  14. Mortgage-** Mortgage** is a loan that a borrower uses by providing collateral and pays it back in installment.
  15. Staking- Staking is when a person locks their capital investment for a period of time to earn interest.
  16. Stop-loss insurance- A policy that protects insurance companies from large claims
  17. Token burn- When tokens are removed from circulation to regulate prices
  18. Tokens- Tokens are used to raise funds for the cryptocurrency and can be used to purchase products from the issuer.
  19. Risk Mitigation — Risk mitigation is the identification, evaluation, and prioritization of risks to minimize, monitor, and control the probability or impact of unfortunate events.
  20. Peer-to-peer finance- P2P in finance is matching lenders with borrowers.

How and Where to Buy HAKA token ?

HAKA has been listed on a number of crypto exchanges, unlike other main cryptocurrencies, it cannot be directly purchased with fiats money. However, You can still easily buy this coin by first buying Bitcoin, ETH, USDT, BNB from any large exchanges and then transfer to the exchange that offers to trade this coin, in this guide article we will walk you through in detail the steps to buy HAKA token.

You will have to first buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

We will use Binance Exchange here as it is one of the largest crypto exchanges that accept fiat deposits.

Binance is a popular cryptocurrency exchange which was started in China but then moved their headquarters to the crypto-friendly Island of Malta in the EU. Binance is popular for its crypto to crypto exchange services. Binance exploded onto the scene in the mania of 2017 and has since gone on to become the top crypto exchange in the world.

Once you finished the KYC process. You will be asked to add a payment method. Here you can either choose to provide a credit/debit card or use a bank transfer, and buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

SIGN UP ON BINANCE

Step by Step Guide : What is Binance | How to Create an account on Binance (Updated 2021)

Next step - Transfer your cryptos to an Altcoin Exchange

Once finished you will then need to make a BTC/ETH/USDT/BNB deposit to the exchange from Binance depending on the available market pairs. After the deposit is confirmed you may then purchase HAKA from the website: https://www.tribeone.io.

The top exchange for trading in HAKA token is currently 

Find more information HAKA

WebsiteWhitepaperSocial ChannelSocial Channel 2Social Channel 3Message Board

🔺DISCLAIMER: The Information in the post isn’t financial advice, is intended FOR GENERAL INFORMATION PURPOSES ONLY. Trading Cryptocurrency is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money.

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner

⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!

☞ **-----CLICK HERE-----**⭐ ⭐ ⭐

I hope this post will help you. Don’t forget to leave a like, comment and sharing it with others. Thank you!

#blockchain #bitcoin #tribeone #haka

Words Counted: A Ruby Natural Language Processor.

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Are you using WordsCounted to do something interesting? Please tell me about it.

 

Demo

Visit this website for one example of what you can do with WordsCounted.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: abitdodgy
Source code: https://github.com/abitdodgy/words_counted
License: MIT license

#ruby  #ruby-on-rails 

Royce  Reinger

Royce Reinger

1658068560

WordsCounted: A Ruby Natural Language Processor

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Are you using WordsCounted to do something interesting? Please tell me about it.

Gem Version 

RubyDoc documentation.

Demo

Visit this website for one example of what you can do with WordsCounted.


Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: Abitdodgy
Source Code: https://github.com/abitdodgy/words_counted 
License: MIT license

#ruby #nlp 

aaron silva

aaron silva

1622197808

SafeMoon Clone | Create A DeFi Token Like SafeMoon | DeFi token like SafeMoon

SafeMoon is a decentralized finance (DeFi) token. This token consists of RFI tokenomics and auto-liquidity generating protocol. A DeFi token like SafeMoon has reached the mainstream standards under the Binance Smart Chain. Its success and popularity have been immense, thus, making the majority of the business firms adopt this style of cryptocurrency as an alternative.

A DeFi token like SafeMoon is almost similar to the other crypto-token, but the only difference being that it charges a 10% transaction fee from the users who sell their tokens, in which 5% of the fee is distributed to the remaining SafeMoon owners. This feature rewards the owners for holding onto their tokens.

Read More @ https://bit.ly/3oFbJoJ

#create a defi token like safemoon #defi token like safemoon #safemoon token #safemoon token clone #defi token

aaron silva

aaron silva

1621844791

SafeMoon Clone | SafeMoon Token Clone | SafeMoon Token Clone Development

The SafeMoon Token Clone Development is the new trendsetter in the digital world that brought significant changes to benefit the growth of investors’ business in a short period. The SafeMoon token clone is the most widely discussed topic among global users for its value soaring high in the marketplace. The SafeMoon token development is a combination of RFI tokenomics and the auto-liquidity generating process. The SafeMoon token is a replica of decentralized finance (DeFi) tokens that are highly scalable and implemented with tamper-proof security.

The SafeMoon tokens execute efficient functionalities like RFI Static Rewards, Automated Liquidity Provisions, and Automatic Token Burns. The SafeMoon token is considered the most advanced stable coin in the crypto market. It gained global audience attention for managing the stability of asset value without any fluctuations in the marketplace. The SafeMoon token clone is completely decentralized that eliminates the need for intermediaries and benefits the users with less transaction fee and wait time to overtake the traditional banking process.

Reasons to invest in SafeMoon Token Clone :

  • The SafeMoon token clone benefits the investors with Automated Liquidity Pool as a unique feature since it adds more revenue for their business growth in less time. The traders can experience instant trade round the clock for reaping profits with less investment towards the SafeMoon token.
  • It is integrated with high-end security protocols like two-factor authentication and signature process to prevent various hacks and vulnerable activities. The Smart Contract system in SafeMoon token development manages the overall operation of transactions without any delay,
  • The users can obtain a reward amount based on the volume of SafeMoon tokens traded in the marketplace. The efficient trading mechanism allows the users to trade the SafeMoon tokens at the best price for farming. The user can earn higher rewards based on the staking volume of tokens by users in the trade market.
  • It allows the token holders to gain complete ownership over their SafeMoon tokens after purchasing from DeFi exchanges. The SafeMoon community governs the token distribution, price fluctuations, staking, and every other token activity. The community boosts the value of SafeMoon tokens.
  • The Automated Burning tokens result in the community no longer having control over the SafeMoon tokens. Instead, the community can control the burn of the tokens efficiently for promoting its value in the marketplace. The transaction of SafeMoon tokens on the blockchain platform is fast, safe, and secure.

The SafeMoon Token Clone Development is a promising future for upcoming investors and startups to increase their business revenue in less time. The SafeMoon token clone has great demand in the real world among millions of users for its value in the market. Investors can contact leading Infinite Block Tech to gain proper assistance in developing a world-class SafeMoon token clone that increases the business growth in less time.

#safemoon token #safemoon token clone #safemoon token clone development #defi token