Hermann  Frami

Hermann Frami

1672512780

NG-toolkit: Angular tool-box! Start Your PWA in Two Steps!

@ng-toolkit

This project has two faces:

  • First, a Angular Universal PWA boilerplate, prepared for easy deployment on Serverless environment. The boilerplate contains all of the best practices and is continously evolving. Find out more about the boilerplate here.
  • Second, a collection of schematics (used with the ng add command) which can be applied to existing Angular projects. All schematics comes from the boilerplate mentioned above. The main goal is to make those schematics interchangeably (developer can apply them in any order)!

Wanna be a server-side Angular hero?

If you want to sharpen your skills in Angular Universal or you won't find what you're looking for in this project; check out the Guide to Angular Universal written by me for Newline.co!

What's inside

PWA starter

npm install -g @ng-toolkit/init
ng new --collection @ng-toolkit/init myApp [--provider --firebaseProject --gaTrackingCode --firebug]

PWA - @angular/pwa extension

Add update mechanism and server-side rendering fixes to your PWA

ng add @ng-toolkit/pwa [--serverModule]

Serverless (Firebase, AWS Lambda, Google Cloud Functions)

Make your app deployable on serverless environment (FaaS)

ng add @ng-toolkit/serverless [--provider --firebaseProject]

Angular Universal

Add server-side rendering and improve SEO of your app

ng add @ng-toolkit/universal

Firebug-lite

Add firebug-lite to your Angular app

ng add @ng-toolkit/firebug

Planned features

Looking for something more?

Feel free to create issue with your feature request

Support @ng-toolkit

You can support development of this project via:

If you want, you can be listed on the List of donors on the demo page.

Credentials

  • Checkout my home page and find out more about me

Download Details:

Author: maciejtreder
Source Code: https://github.com/maciejtreder/ng-toolkit 
License: MIT license

#serverless #ng #toolkit #angular #pwa 

What is GEEK

Buddha Community

NG-toolkit: Angular tool-box! Start Your PWA in Two Steps!
Hermann  Frami

Hermann Frami

1672512780

NG-toolkit: Angular tool-box! Start Your PWA in Two Steps!

@ng-toolkit

This project has two faces:

  • First, a Angular Universal PWA boilerplate, prepared for easy deployment on Serverless environment. The boilerplate contains all of the best practices and is continously evolving. Find out more about the boilerplate here.
  • Second, a collection of schematics (used with the ng add command) which can be applied to existing Angular projects. All schematics comes from the boilerplate mentioned above. The main goal is to make those schematics interchangeably (developer can apply them in any order)!

Wanna be a server-side Angular hero?

If you want to sharpen your skills in Angular Universal or you won't find what you're looking for in this project; check out the Guide to Angular Universal written by me for Newline.co!

What's inside

PWA starter

npm install -g @ng-toolkit/init
ng new --collection @ng-toolkit/init myApp [--provider --firebaseProject --gaTrackingCode --firebug]

PWA - @angular/pwa extension

Add update mechanism and server-side rendering fixes to your PWA

ng add @ng-toolkit/pwa [--serverModule]

Serverless (Firebase, AWS Lambda, Google Cloud Functions)

Make your app deployable on serverless environment (FaaS)

ng add @ng-toolkit/serverless [--provider --firebaseProject]

Angular Universal

Add server-side rendering and improve SEO of your app

ng add @ng-toolkit/universal

Firebug-lite

Add firebug-lite to your Angular app

ng add @ng-toolkit/firebug

Planned features

Looking for something more?

Feel free to create issue with your feature request

Support @ng-toolkit

You can support development of this project via:

If you want, you can be listed on the List of donors on the demo page.

Credentials

  • Checkout my home page and find out more about me

Download Details:

Author: maciejtreder
Source Code: https://github.com/maciejtreder/ng-toolkit 
License: MIT license

#serverless #ng #toolkit #angular #pwa 

John  Smith

John Smith

1657107416

Find the Best Restaurant Mobile App Development Company in Abu Dhbai

The era of mobile app development has completely changed the scenario for businesses in regions like Abu Dhabi. Restaurants and food delivery businesses are experiencing huge benefits via smart business applications. The invention and development of the food ordering app have helped all-scale businesses reach new customers and boost sales and profit. 

As a result, many business owners are searching for the best restaurant mobile app development company in Abu Dhabi. If you are also searching for the same, this article is helpful for you. It will let you know the step-by-step process to hire the right team of restaurant mobile app developers. 

Step-by-Step Process to Find the Best Restaurant App Development Company

Searching for the top mobile app development company in Abu Dhabi? Don't know the best way to search for professionals? Don't panic! Here is the step-by-step process to hire the best professionals. 

#Step 1 – Know the Company's Culture

Knowing the organization's culture is very crucial before finalizing a food ordering app development company in Abu Dhabi. An organization's personality is shaped by its common beliefs, goals, practices, or company culture. So, digging into the company culture reveals the core beliefs of the organization, its objectives, and its development team. 

Now, you might be wondering, how will you identify the company's culture? Well, you can take reference from the following sources – 

  • Social media posts 
  • App development process
  • About us Page
  • Client testimonials

#Step 2 - Refer to Clients' Reviews

Another best way to choose the On-demand app development firm for your restaurant business is to refer to the clients' reviews. Reviews are frequently available on the organization's website with a tag of "Reviews" or "Testimonials." It's important to read the reviews as they will help you determine how happy customers are with the company's app development process. 

You can also assess a company's abilities through reviews and customer testimonials. They can let you know if the mobile app developers create a valuable app or not. 

#Step 3 – Analyze the App Development Process

Regardless of the company's size or scope, adhering to the restaurant delivery app development process will ensure the success of your business application. Knowing the processes an app developer follows in designing and producing a top-notch app will help you know the working process. Organizations follow different app development approaches, so getting well-versed in the process is essential before finalizing any mobile app development company. 

#Step 4 – Consider Previous Experience

Besides considering other factors, considering the previous experience of the developers is a must. You can obtain a broad sense of the developer's capacity to assist you in creating a unique mobile application for a restaurant business.

You can also find out if the developers' have contributed to the creation of other successful applications or not. It will help you know the working capacity of a particular developer or organization. Prior experience is essential to evaluating their work. For instance, whether they haven't previously produced an app similar to yours or not. 

#Step 5 – Check for Their Technical Support

As you expect a working and successful restaurant mobile app for your business, checking on this factor is a must. A well-established organization is nothing without a good technical support team. So, ensure whatever restaurant mobile app development company you choose they must be well-equipped with a team of dedicated developers, designers, and testers. 

Strong tech support from your mobile app developers will help you identify new bugs and fix them bugs on time. All this will ensure the application's success. 

#Step 6 – Analyze Design Standards

Besides focusing on an organization's development, testing, and technical support, you should check the design standards. An appealing design is crucial in attracting new users and keeping the existing ones stick to your services. So, spend some time analyzing the design standards of an organization. Now, you might be wondering, how will you do it? Simple! By looking at the organization's portfolio. 

Whether hiring an iPhone app development company or any other, these steps apply to all. So, don't miss these steps. 

#Step 7 – Know Their Location

Finally, the last yet very crucial factor that will not only help you finalize the right person for your restaurant mobile app development but will also decide the mobile app development cost. So, you have to choose the location of the developers wisely, as it is a crucial factor in defining the cost. 

Summing Up!!!

Restaurant mobile applications have taken the food industry to heights none have ever considered. As a result, the demand for restaurant mobile app development companies has risen greatly, which is why businesses find it difficult to finalize the right person. But, we hope that after referring to this article, it will now be easier to hire dedicated developers under the desired budget. So, begin the hiring process now and get a well-craft food ordering app in hand. 

Dylan  Iqbal

Dylan Iqbal

1561523460

Matplotlib Cheat Sheet: Plotting in Python

This Matplotlib cheat sheet introduces you to the basics that you need to plot your data with Python and includes code samples.

Data visualization and storytelling with your data are essential skills that every data scientist needs to communicate insights gained from analyses effectively to any audience out there. 

For most beginners, the first package that they use to get in touch with data visualization and storytelling is, naturally, Matplotlib: it is a Python 2D plotting library that enables users to make publication-quality figures. But, what might be even more convincing is the fact that other packages, such as Pandas, intend to build more plotting integration with Matplotlib as time goes on.

However, what might slow down beginners is the fact that this package is pretty extensive. There is so much that you can do with it and it might be hard to still keep a structure when you're learning how to work with Matplotlib.   

DataCamp has created a Matplotlib cheat sheet for those who might already know how to use the package to their advantage to make beautiful plots in Python, but that still want to keep a one-page reference handy. Of course, for those who don't know how to work with Matplotlib, this might be the extra push be convinced and to finally get started with data visualization in Python. 

You'll see that this cheat sheet presents you with the six basic steps that you can go through to make beautiful plots. 

Check out the infographic by clicking on the button below:

Python Matplotlib cheat sheet

With this handy reference, you'll familiarize yourself in no time with the basics of Matplotlib: you'll learn how you can prepare your data, create a new plot, use some basic plotting routines to your advantage, add customizations to your plots, and save, show and close the plots that you make.

What might have looked difficult before will definitely be more clear once you start using this cheat sheet! Use it in combination with the Matplotlib Gallery, the documentation.

Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms.

Prepare the Data 

1D Data 

>>> import numpy as np
>>> x = np.linspace(0, 10, 100)
>>> y = np.cos(x)
>>> z = np.sin(x)

2D Data or Images 

>>> data = 2 * np.random.random((10, 10))
>>> data2 = 3 * np.random.random((10, 10))
>>> Y, X = np.mgrid[-3:3:100j, -3:3:100j]
>>> U = 1 X** 2 + Y
>>> V = 1 + X Y**2
>>> from matplotlib.cbook import get_sample_data
>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

Create Plot

>>> import matplotlib.pyplot as plt

Figure 

>>> fig = plt.figure()
>>> fig2 = plt.figure(figsize=plt.figaspect(2.0))

Axes 

>>> fig.add_axes()
>>> ax1 = fig.add_subplot(221) #row-col-num
>>> ax3 = fig.add_subplot(212)
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> fig4, axes2 = plt.subplots(ncols=3)

Save Plot 

>>> plt.savefig('foo.png') #Save figures
>>> plt.savefig('foo.png',  transparent=True) #Save transparent figures

Show Plot

>>> plt.show()

Plotting Routines 

1D Data 

>>> fig, ax = plt.subplots()
>>> lines = ax.plot(x,y) #Draw points with lines or markers connecting them
>>> ax.scatter(x,y) #Draw unconnected points, scaled or colored
>>> axes[0,0].bar([1,2,3],[3,4,5]) #Plot vertical rectangles (constant width)
>>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) #Plot horiontal rectangles (constant height)
>>> axes[1,1].axhline(0.45) #Draw a horizontal line across axes
>>> axes[0,1].axvline(0.65) #Draw a vertical line across axes
>>> ax.fill(x,y,color='blue') #Draw filled polygons
>>> ax.fill_between(x,y,color='yellow') #Fill between y values and 0

2D Data 

>>> fig, ax = plt.subplots()
>>> im = ax.imshow(img, #Colormapped or RGB arrays
      cmap= 'gist_earth', 
      interpolation= 'nearest',
      vmin=-2,
      vmax=2)
>>> axes2[0].pcolor(data2) #Pseudocolor plot of 2D array
>>> axes2[0].pcolormesh(data) #Pseudocolor plot of 2D array
>>> CS = plt.contour(Y,X,U) #Plot contours
>>> axes2[2].contourf(data1) #Plot filled contours
>>> axes2[2]= ax.clabel(CS) #Label a contour plot

Vector Fields 

>>> axes[0,1].arrow(0,0,0.5,0.5) #Add an arrow to the axes
>>> axes[1,1].quiver(y,z) #Plot a 2D field of arrows
>>> axes[0,1].streamplot(X,Y,U,V) #Plot a 2D field of arrows

Data Distributions 

>>> ax1.hist(y) #Plot a histogram
>>> ax3.boxplot(y) #Make a box and whisker plot
>>> ax3.violinplot(z)  #Make a violin plot

Plot Anatomy & Workflow 

Plot Anatomy 

 y-axis      

                           x-axis 

Workflow 

The basic steps to creating plots with matplotlib are:

1 Prepare Data
2 Create Plot
3 Plot
4 Customized Plot
5 Save Plot
6 Show Plot

>>> import matplotlib.pyplot as plt
>>> x = [1,2,3,4]  #Step 1
>>> y = [10,20,25,30] 
>>> fig = plt.figure() #Step 2
>>> ax = fig.add_subplot(111) #Step 3
>>> ax.plot(x, y, color= 'lightblue', linewidth=3)  #Step 3, 4
>>> ax.scatter([2,4,6],
          [5,15,25],
          color= 'darkgreen',
          marker= '^' )
>>> ax.set_xlim(1, 6.5)
>>> plt.savefig('foo.png' ) #Step 5
>>> plt.show() #Step 6

Close and Clear 

>>> plt.cla()  #Clear an axis
>>> plt.clf(). #Clear the entire figure
>>> plt.close(). #Close a window

Plotting Customize Plot 

Colors, Color Bars & Color Maps 

>>> plt.plot(x, x, x, x**2, x, x** 3)
>>> ax.plot(x, y, alpha = 0.4)
>>> ax.plot(x, y, c= 'k')
>>> fig.colorbar(im, orientation= 'horizontal')
>>> im = ax.imshow(img,
            cmap= 'seismic' )

Markers 

>>> fig, ax = plt.subplots()
>>> ax.scatter(x,y,marker= ".")
>>> ax.plot(x,y,marker= "o")

Linestyles 

>>> plt.plot(x,y,linewidth=4.0)
>>> plt.plot(x,y,ls= 'solid') 
>>> plt.plot(x,y,ls= '--') 
>>> plt.plot(x,y,'--' ,x**2,y**2,'-.' ) 
>>> plt.setp(lines,color= 'r',linewidth=4.0)

Text & Annotations 

>>> ax.text(1,
           -2.1, 
           'Example Graph', 
            style= 'italic' )
>>> ax.annotate("Sine", 
xy=(8, 0),
xycoords= 'data', 
xytext=(10.5, 0),
textcoords= 'data', 
arrowprops=dict(arrowstyle= "->", 
connectionstyle="arc3"),)

Mathtext 

>>> plt.title(r '$sigma_i=15$', fontsize=20)

Limits, Legends and Layouts 

Limits & Autoscaling 

>>> ax.margins(x=0.0,y=0.1) #Add padding to a plot
>>> ax.axis('equal')  #Set the aspect ratio of the plot to 1
>>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5])  #Set limits for x-and y-axis
>>> ax.set_xlim(0,10.5) #Set limits for x-axis

Legends 

>>> ax.set(title= 'An Example Axes',  #Set a title and x-and y-axis labels
            ylabel= 'Y-Axis', 
            xlabel= 'X-Axis')
>>> ax.legend(loc= 'best')  #No overlapping plot elements

Ticks 

>>> ax.xaxis.set(ticks=range(1,5),  #Manually set x-ticks
             ticklabels=[3,100, 12,"foo" ])
>>> ax.tick_params(axis= 'y', #Make y-ticks longer and go in and out
             direction= 'inout', 
              length=10)

Subplot Spacing 

>>> fig3.subplots_adjust(wspace=0.5,   #Adjust the spacing between subplots
             hspace=0.3,
             left=0.125,
             right=0.9,
             top=0.9,
             bottom=0.1)
>>> fig.tight_layout() #Fit subplot(s) in to the figure area

Axis Spines 

>>> ax1.spines[ 'top'].set_visible(False) #Make the top axis line for a plot invisible
>>> ax1.spines['bottom' ].set_position(( 'outward',10))  #Move the bottom axis line outward

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#matplotlib #cheatsheet #python

Christa  Stehr

Christa Stehr

1598940617

Install Angular - Angular Environment Setup Process

Angular is a TypeScript based framework that works in synchronization with HTML, CSS, and JavaScript. To work with angular, domain knowledge of these 3 is required.

  1. Installing Node.js and npm
  2. Installing Angular CLI
  3. Creating workspace
  4. Deploying your First App

In this article, you will get to know about the Angular Environment setup process. After reading this article, you will be able to install, setup, create, and launch your own application in Angular. So let’s start!!!

Angular environment setup

Install Angular in Easy Steps

For Installing Angular on your Machine, there are 2 prerequisites:

  • Node.js
  • npm Package Manager
Node.js

First you need to have Node.js installed as Angular require current, active LTS or maintenance LTS version of Node.js

Download and Install Node.js version suitable for your machine’s operating system.

Npm Package Manager

Angular, Angular CLI and Angular applications are dependent on npm packages. By installing Node.js, you have automatically installed the npm Package manager which will be the base for installing angular in your system. To check the presence of npm client and Angular version check of npm client, run this command:

  1. npm -v

Installing Angular CLI

  • Open Terminal/Command Prompt
  • To install Angular CLI, run the below command:
  1. npm install -g @angular/cli

installing angular CLI

· After executing the command, Angular CLI will get installed within some time. You can check it using the following command

  1. ng --version

Workspace Creation

Now as your Angular CLI is installed, you need to create a workspace to work upon your application. Methods for it are:

  • Using CLI
  • Using Visual Studio Code
1. Using CLI

To create a workspace:

  • Navigate to the desired directory where you want to create your workspace using cd command in the Terminal/Command prompt
  • Then in the directory write this command on your terminal and provide the name of the app which you want to create. In my case I have mentioned DataFlair:
  1. Ng new YourAppName

create angular workspace

  • After running this command, it will prompt you to select from various options about the CSS and other functionalities.

angular CSS options

  • To leave everything to default, simply press the Enter or the Return key.

angular setup

#angular tutorials #angular cli install #angular environment setup #angular version check #download angular #install angular #install angular cli

Garry Taylor

Garry Taylor

1653464648

Python Data Visualization: Bokeh Cheat Sheet

A handy cheat sheet for interactive plotting and statistical charts with Bokeh.

Bokeh distinguishes itself from other Python visualization libraries such as Matplotlib or Seaborn in the fact that it is an interactive visualization library that is ideal for anyone who would like to quickly and easily create interactive plots, dashboards, and data applications. 

Bokeh is also known for enabling high-performance visual presentation of large data sets in modern web browsers. 

For data scientists, Bokeh is the ideal tool to build statistical charts quickly and easily; But there are also other advantages, such as the various output options and the fact that you can embed your visualizations in applications. And let's not forget that the wide variety of visualization customization options makes this Python library an indispensable tool for your data science toolbox.

Now, DataCamp has created a Bokeh cheat sheet for those who have already taken the course and that still want a handy one-page reference or for those who need an extra push to get started.

In short, you'll see that this cheat sheet not only presents you with the five steps that you can go through to make beautiful plots but will also introduce you to the basics of statistical charts. 

Python Bokeh Cheat Sheet

In no time, this Bokeh cheat sheet will make you familiar with how you can prepare your data, create a new plot, add renderers for your data with custom visualizations, output your plot and save or show it. And the creation of basic statistical charts will hold no secrets for you any longer. 

Boost your Python data visualizations now with the help of Bokeh! :)


Plotting With Bokeh

The Python interactive visualization library Bokeh enables high-performance visual presentation of large datasets in modern web browsers.

Bokeh's mid-level general-purpose bokeh. plotting interface is centered around two main components: data and glyphs.

The basic steps to creating plots with the bokeh. plotting interface are:

  1. Prepare some data (Python lists, NumPy arrays, Pandas DataFrames and other sequences of values)
  2. Create a new plot
  3. Add renderers for your data, with visual customizations
  4. Specify where to generate the output
  5. Show or save the results
>>> from bokeh.plotting import figure
>>> from bokeh.io import output_file, show
>>> x = [1, 2, 3, 4, 5] #Step 1
>>> y = [6, 7, 2, 4, 5]
>>> p = figure(title="simple line example", #Step 2
x_axis_label='x',
y_axis_label='y')
>>> p.line(x, y, legend="Temp.", line_width=2) #Step 3
>>> output_file("lines.html") #Step 4
>>> show(p) #Step 5

1. Data 

Under the hood, your data is converted to Column Data Sources. You can also do this manually:

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.OataFrame(np.array([[33.9,4,65, 'US'], [32.4, 4, 66, 'Asia'], [21.4, 4, 109, 'Europe']]),
                     columns= ['mpg', 'cyl',   'hp',   'origin'],
                      index=['Toyota', 'Fiat', 'Volvo'])


>>> from bokeh.models import ColumnOataSource
>>> cds_df = ColumnOataSource(df)

2. Plotting 

>>> from bokeh.plotting import figure
>>>p1= figure(plot_width=300, tools='pan,box_zoom')
>>> p2 = figure(plot_width=300, plot_height=300,
x_range=(0, 8), y_range=(0, 8))
>>> p3 = figure()

3. Renderers & Visual Customizations 

Glyphs 

Scatter Markers 
Bokeh Scatter Markers

>>> p1.circle(np.array([1,2,3]), np.array([3,2,1]), fill_color='white')
>>> p2.square(np.array([1.5,3.5,5.5]), [1,4,3],
color='blue', size=1)

Line Glyphs 

Bokeh Line Glyphs

>>> pl.line([1,2,3,4], [3,4,5,6], line_width=2)
>>> p2.multi_line(pd.DataFrame([[1,2,3],[5,6,7]]),
pd.DataFrame([[3,4,5],[3,2,1]]),
color="blue")

Customized Glyphs

Selection and Non-Selection Glyphs 

Selection Glyphs

>>> p = figure(tools='box_select')
>>> p. circle ('mpg', 'cyl', source=cds_df,
selection_color='red',
nonselection_alpha=0.1)

Hover Glyphs

Hover Glyphs

>>> from bokeh.models import HoverTool
>>>hover= HoverTool(tooltips=None, mode='vline')
>>> p3.add_tools(hover)

Color Mapping 

Bokeh Colormapping Glyphs

>>> from bokeh.models import CategoricalColorMapper
>>> color_mapper = CategoricalColorMapper(
             factors= ['US', 'Asia', 'Europe'],
             palette= ['blue', 'red', 'green'])
>>>  p3. circle ('mpg', 'cyl', source=cds_df,
            color=dict(field='origin',
                 transform=color_mapper), legend='Origin')

4. Output & Export 

Notebook

>>> from bokeh.io import output_notebook, show
>>> output_notebook()

HTML 

Standalone HTML 

>>> from bokeh.embed import file_html
>>> from bokeh.resources import CON
>>> html = file_html(p, CON, "my_plot")

>>> from  bokeh.io  import  output_file,  show
>>> output_file('my_bar_chart.html',  mode='cdn')

Components

>>> from bokeh.embed import components
>>> script, div= components(p)

PNG

>>> from bokeh.io import export_png
>>> export_png(p, filename="plot.png")

SVG 

>>> from bokeh.io import export_svgs
>>> p. output_backend = "svg"
>>> export_svgs(p,filename="plot.svg")

Legend Location 

Inside Plot Area 

>>> p.legend.location = 'bottom left'

Outside Plot Area 

>>> from bokeh.models import Legend
>>> r1 = p2.asterisk(np.array([1,2,3]), np.array([3,2,1])
>>> r2 = p2.line([1,2,3,4], [3,4,5,6])
>>> legend = Legend(items=[("One" ,[p1, r1]),("Two",[r2])], location=(0, -30))
>>> p.add_layout(legend, 'right')

Legend Background & Border 

>>> p.legend. border_line_color = "navy"
>>> p.legend.background_fill_color = "white"

Legend Orientation 

>>> p.legend.orientation = "horizontal"
>>> p.legend.orientation = "vertical"

Rows & Columns Layout

Rows

>>> from bokeh.layouts import row
>>>layout= row(p1,p2,p3)

Columns

>>> from bokeh.layouts import columns
>>>layout= column(p1,p2,p3)

Nesting Rows & Columns 

>>>layout= row(column(p1,p2), p3)

Grid Layout 

>>> from bokeh.layouts import gridplot
>>> rowl = [p1,p2]
>>> row2 = [p3]
>>> layout = gridplot([[p1, p2],[p3]])

Tabbed Layout 

>>> from bokeh.models.widgets import Panel, Tabs
>>> tab1 = Panel(child=p1, title="tab1")
>>> tab2 = Panel(child=p2, title="tab2")
>>> layout = Tabs(tabs=[tab1, tab2])

Linked Plots

Linked Axes 

Linked Axes
>>> p2.x_range = p1.x_range
>>> p2.y_range = p1.y_range

Linked Brushing 

>>> p4 = figure(plot_width = 100, tools='box_select,lasso_select')
>>> p4.circle('mpg', 'cyl' , source=cds_df)
>>> p5 = figure(plot_width = 200, tools='box_select,lasso_select')
>>> p5.circle('mpg', 'hp', source=cds df)
>>>layout= row(p4,p5)

5. Show or Save Your Plots  

>>> show(p1)
>>> show(layout)
>>> save(p1)

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#python #datavisualization #bokeh #cheatsheet