How To Configure Rails Tests with RSpec, FactoryBot and Capybara

So, you’re asked to test your application but have no idea how to begin. Or you read about TDD, RSpec, FactoryBot, Capybara, and maybe you didn’t understand what they were meant for, or maybe when you tried to run them into your project nothing worked.

This is a beginner guide on how to set up your environment for using these technologies. If you are not familiar with these terms, here is a brief explanation about them:

  • TDD (Test Driven Development): It is a development technique where the tests are built before starting the real code. In this process, the tests are created based on the requirements, and the code is implemented to pass the tests.
  • RSpec: It’s a Ruby written language for testing Ruby code. Yeah! This is your testing tool. A language created with Ruby in order to offer an interface to write readable tests for your project. It is an alternative for Minitest, the default Rails testing framework. This is a test example for a User model with RSpec.
RSpec.describe User, type: :model do it 'name should not have less than 3 characters' do user = User.new user.name = 'ab' user.valid? expect(user.errors[:name]).to include('is too short (minimum is 3 characters)') end end
  • Capybara: Another testing tool - a library that enables browser interaction using Ruby. In other words, this one is used to simulate how a user interacts with your web application. It is combined with RSpec to create the ‘feature testing’ environment. Here is an example of testing with RSpec and Capybara for a ‘login’ page:
RSpec.feature 'Users', type: :feature do it 'are redirected to root page when login is sucessfull' do fill_in 'session_username', with: 'myusername' fill_in 'session_password', with: 'mypassword' find("input[type='submit']").click expect(page).to have_current_path(root_path) end end
  • DatabaseCleaner: As the name says, it is a tool used to clean the database after tests. It is useful for situations where running a test creates a new object in the database that could interfere with other tests.
  • FactoryBot: It allows us to create an object or a collection of objects with predefined sets of values for our tests. What does it mean? If we have a ‘User’ model, we can create predefined values for different kinds of users. That means it is possible to define a ‘random user’ and a ‘regular user’ factory and use them inside your tests, without the need to declare every time. This is a really simple example of how it can be declared used inside our tests:
FactoryBot.define do factory :user do name { 'Simple User' } factory :user_random do sequence(:name) { |n| "User #{n}" } end end end
RSpec.describe User, type: :model do it '...' do user = create(:user) ## user.name: 'Simple User' random_user = create(:user_random) ## random_user.name: 'User 1' random_user = create(:user_random) ## random_user.name: 'User 2' end end

Ok, now that you are already familiar with these terms we can move on and configure your project to use these technologies.

#rails #rspec #factory-bot #capybara #testing #ruby-on-rails #environment-setup #coding

What is GEEK

Buddha Community

How To Configure Rails Tests with RSpec, FactoryBot and Capybara

How To Configure Rails Tests with RSpec, FactoryBot and Capybara

So, you’re asked to test your application but have no idea how to begin. Or you read about TDD, RSpec, FactoryBot, Capybara, and maybe you didn’t understand what they were meant for, or maybe when you tried to run them into your project nothing worked.

This is a beginner guide on how to set up your environment for using these technologies. If you are not familiar with these terms, here is a brief explanation about them:

  • TDD (Test Driven Development): It is a development technique where the tests are built before starting the real code. In this process, the tests are created based on the requirements, and the code is implemented to pass the tests.
  • RSpec: It’s a Ruby written language for testing Ruby code. Yeah! This is your testing tool. A language created with Ruby in order to offer an interface to write readable tests for your project. It is an alternative for Minitest, the default Rails testing framework. This is a test example for a User model with RSpec.
RSpec.describe User, type: :model do it 'name should not have less than 3 characters' do user = User.new user.name = 'ab' user.valid? expect(user.errors[:name]).to include('is too short (minimum is 3 characters)') end end
  • Capybara: Another testing tool - a library that enables browser interaction using Ruby. In other words, this one is used to simulate how a user interacts with your web application. It is combined with RSpec to create the ‘feature testing’ environment. Here is an example of testing with RSpec and Capybara for a ‘login’ page:
RSpec.feature 'Users', type: :feature do it 'are redirected to root page when login is sucessfull' do fill_in 'session_username', with: 'myusername' fill_in 'session_password', with: 'mypassword' find("input[type='submit']").click expect(page).to have_current_path(root_path) end end
  • DatabaseCleaner: As the name says, it is a tool used to clean the database after tests. It is useful for situations where running a test creates a new object in the database that could interfere with other tests.
  • FactoryBot: It allows us to create an object or a collection of objects with predefined sets of values for our tests. What does it mean? If we have a ‘User’ model, we can create predefined values for different kinds of users. That means it is possible to define a ‘random user’ and a ‘regular user’ factory and use them inside your tests, without the need to declare every time. This is a really simple example of how it can be declared used inside our tests:
FactoryBot.define do factory :user do name { 'Simple User' } factory :user_random do sequence(:name) { |n| "User #{n}" } end end end
RSpec.describe User, type: :model do it '...' do user = create(:user) ## user.name: 'Simple User' random_user = create(:user_random) ## random_user.name: 'User 1' random_user = create(:user_random) ## random_user.name: 'User 2' end end

Ok, now that you are already familiar with these terms we can move on and configure your project to use these technologies.

#rails #rspec #factory-bot #capybara #testing #ruby-on-rails #environment-setup #coding

Background Fetch for React Native Apps

react-native-background-fetch

Background Fetch is a very simple plugin which attempts to awaken an app in the background about every 15 minutes, providing a short period of background running-time. This plugin will execute your provided callbackFn whenever a background-fetch event occurs.

There is no way to increase the rate which a fetch-event occurs and this plugin sets the rate to the most frequent possible — you will never receive an event faster than 15 minutes. The operating-system will automatically throttle the rate the background-fetch events occur based upon usage patterns. Eg: if user hasn't turned on their phone for a long period of time, fetch events will occur less frequently or if an iOS user disables background refresh they may not happen at all.

:new: Background Fetch now provides a scheduleTask method for scheduling arbitrary "one-shot" or periodic tasks.

iOS

  • There is no way to increase the rate which a fetch-event occurs and this plugin sets the rate to the most frequent possible — you will never receive an event faster than 15 minutes. The operating-system will automatically throttle the rate the background-fetch events occur based upon usage patterns. Eg: if user hasn't turned on their phone for a long period of time, fetch events will occur less frequently.
  • scheduleTask seems only to fire when the device is plugged into power.
  • ⚠️ When your app is terminated, iOS no longer fires events — There is no such thing as stopOnTerminate: false for iOS.
  • iOS can take days before Apple's machine-learning algorithm settles in and begins regularly firing events. Do not sit staring at your logs waiting for an event to fire. If your simulated events work, that's all you need to know that everything is correctly configured.
  • If the user doesn't open your iOS app for long periods of time, iOS will stop firing events.

Android

Installing the plugin

⚠️ If you have a previous version of react-native-background-fetch < 2.7.0 installed into react-native >= 0.60, you should first unlink your previous version as react-native link is no longer required.

$ react-native unlink react-native-background-fetch

With yarn

$ yarn add react-native-background-fetch

With npm

$ npm install --save react-native-background-fetch

Setup Guides

iOS Setup

react-native >= 0.60

Android Setup

react-native >= 0.60

Example

ℹ️ This repo contains its own Example App. See /example

import React from 'react';
import {
  SafeAreaView,
  StyleSheet,
  ScrollView,
  View,
  Text,
  FlatList,
  StatusBar,
} from 'react-native';

import {
  Header,
  Colors
} from 'react-native/Libraries/NewAppScreen';

import BackgroundFetch from "react-native-background-fetch";

class App extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      events: []
    };
  }

  componentDidMount() {
    // Initialize BackgroundFetch ONLY ONCE when component mounts.
    this.initBackgroundFetch();
  }

  async initBackgroundFetch() {
    // BackgroundFetch event handler.
    const onEvent = async (taskId) => {
      console.log('[BackgroundFetch] task: ', taskId);
      // Do your background work...
      await this.addEvent(taskId);
      // IMPORTANT:  You must signal to the OS that your task is complete.
      BackgroundFetch.finish(taskId);
    }

    // Timeout callback is executed when your Task has exceeded its allowed running-time.
    // You must stop what you're doing immediately BackgroundFetch.finish(taskId)
    const onTimeout = async (taskId) => {
      console.warn('[BackgroundFetch] TIMEOUT task: ', taskId);
      BackgroundFetch.finish(taskId);
    }

    // Initialize BackgroundFetch only once when component mounts.
    let status = await BackgroundFetch.configure({minimumFetchInterval: 15}, onEvent, onTimeout);

    console.log('[BackgroundFetch] configure status: ', status);
  }

  // Add a BackgroundFetch event to <FlatList>
  addEvent(taskId) {
    // Simulate a possibly long-running asynchronous task with a Promise.
    return new Promise((resolve, reject) => {
      this.setState(state => ({
        events: [...state.events, {
          taskId: taskId,
          timestamp: (new Date()).toString()
        }]
      }));
      resolve();
    });
  }

  render() {
    return (
      <>
        <StatusBar barStyle="dark-content" />
        <SafeAreaView>
          <ScrollView
            contentInsetAdjustmentBehavior="automatic"
            style={styles.scrollView}>
            <Header />

            <View style={styles.body}>
              <View style={styles.sectionContainer}>
                <Text style={styles.sectionTitle}>BackgroundFetch Demo</Text>
              </View>
            </View>
          </ScrollView>
          <View style={styles.sectionContainer}>
            <FlatList
              data={this.state.events}
              renderItem={({item}) => (<Text>[{item.taskId}]: {item.timestamp}</Text>)}
              keyExtractor={item => item.timestamp}
            />
          </View>
        </SafeAreaView>
      </>
    );
  }
}

const styles = StyleSheet.create({
  scrollView: {
    backgroundColor: Colors.lighter,
  },
  body: {
    backgroundColor: Colors.white,
  },
  sectionContainer: {
    marginTop: 32,
    paddingHorizontal: 24,
  },
  sectionTitle: {
    fontSize: 24,
    fontWeight: '600',
    color: Colors.black,
  },
  sectionDescription: {
    marginTop: 8,
    fontSize: 18,
    fontWeight: '400',
    color: Colors.dark,
  },
});

export default App;

Executing Custom Tasks

In addition to the default background-fetch task defined by BackgroundFetch.configure, you may also execute your own arbitrary "oneshot" or periodic tasks (iOS requires additional Setup Instructions). However, all events will be fired into the Callback provided to BackgroundFetch#configure:

⚠️ iOS:

  • scheduleTask on iOS seems only to run when the device is plugged into power.
  • scheduleTask on iOS are designed for low-priority tasks, such as purging cache files — they tend to be unreliable for mission-critical tasks. scheduleTask will never run as frequently as you want.
  • The default fetch event is much more reliable and fires far more often.
  • scheduleTask on iOS stop when the user terminates the app. There is no such thing as stopOnTerminate: false for iOS.
// Step 1:  Configure BackgroundFetch as usual.
let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15
}, async (taskId) => {  // <-- Event callback
  // This is the fetch-event callback.
  console.log("[BackgroundFetch] taskId: ", taskId);

  // Use a switch statement to route task-handling.
  switch (taskId) {
    case 'com.foo.customtask':
      print("Received custom task");
      break;
    default:
      print("Default fetch task");
  }
  // Finish, providing received taskId.
  BackgroundFetch.finish(taskId);
}, async (taskId) => {  // <-- Task timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  BackgroundFetch.finish(taskId);
});

// Step 2:  Schedule a custom "oneshot" task "com.foo.customtask" to execute 5000ms from now.
BackgroundFetch.scheduleTask({
  taskId: "com.foo.customtask",
  forceAlarmManager: true,
  delay: 5000  // <-- milliseconds
});

API Documentation

Config

Common Options

@param {Integer} minimumFetchInterval [15]

The minimum interval in minutes to execute background fetch events. Defaults to 15 minutes. Note: Background-fetch events will never occur at a frequency higher than every 15 minutes. Apple uses a secret algorithm to adjust the frequency of fetch events, presumably based upon usage patterns of the app. Fetch events can occur less often than your configured minimumFetchInterval.

@param {Integer} delay (milliseconds)

ℹ️ Valid only for BackgroundFetch.scheduleTask. The minimum number of milliseconds in future that task should execute.

@param {Boolean} periodic [false]

ℹ️ Valid only for BackgroundFetch.scheduleTask. Defaults to false. Set true to execute the task repeatedly. When false, the task will execute just once.

Android Options

@config {Boolean} stopOnTerminate [true]

Set false to continue background-fetch events after user terminates the app. Default to true.

@config {Boolean} startOnBoot [false]

Set true to initiate background-fetch events when the device is rebooted. Defaults to false.

NOTE: startOnBoot requires stopOnTerminate: false.

@config {Boolean} forceAlarmManager [false]

By default, the plugin will use Android's JobScheduler when possible. The JobScheduler API prioritizes for battery-life, throttling task-execution based upon device usage and battery level.

Configuring forceAlarmManager: true will bypass JobScheduler to use Android's older AlarmManager API, resulting in more accurate task-execution at the cost of higher battery usage.

let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15,
  forceAlarmManager: true
}, async (taskId) => {  // <-- Event callback
  console.log("[BackgroundFetch] taskId: ", taskId);
  BackgroundFetch.finish(taskId);
}, async (taskId) => {  // <-- Task timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  BackgroundFetch.finish(taskId);
});
.
.
.
// And with with #scheduleTask
BackgroundFetch.scheduleTask({
  taskId: 'com.foo.customtask',
  delay: 5000,       // milliseconds
  forceAlarmManager: true,
  periodic: false
});

@config {Boolean} enableHeadless [false]

Set true to enable React Native's Headless JS mechanism, for handling fetch events after app termination.

  • 📂 index.js (MUST BE IN index.js):
import BackgroundFetch from "react-native-background-fetch";

let MyHeadlessTask = async (event) => {
  // Get task id from event {}:
  let taskId = event.taskId;
  let isTimeout = event.timeout;  // <-- true when your background-time has expired.
  if (isTimeout) {
    // This task has exceeded its allowed running-time.
    // You must stop what you're doing immediately finish(taskId)
    console.log('[BackgroundFetch] Headless TIMEOUT:', taskId);
    BackgroundFetch.finish(taskId);
    return;
  }
  console.log('[BackgroundFetch HeadlessTask] start: ', taskId);

  // Perform an example HTTP request.
  // Important:  await asychronous tasks when using HeadlessJS.
  let response = await fetch('https://reactnative.dev/movies.json');
  let responseJson = await response.json();
  console.log('[BackgroundFetch HeadlessTask] response: ', responseJson);

  // Required:  Signal to native code that your task is complete.
  // If you don't do this, your app could be terminated and/or assigned
  // battery-blame for consuming too much time in background.
  BackgroundFetch.finish(taskId);
}

// Register your BackgroundFetch HeadlessTask
BackgroundFetch.registerHeadlessTask(MyHeadlessTask);

@config {integer} requiredNetworkType [BackgroundFetch.NETWORK_TYPE_NONE]

Set basic description of the kind of network your job requires.

If your job doesn't need a network connection, you don't need to use this option as the default value is BackgroundFetch.NETWORK_TYPE_NONE.

NetworkTypeDescription
BackgroundFetch.NETWORK_TYPE_NONEThis job doesn't care about network constraints, either any or none.
BackgroundFetch.NETWORK_TYPE_ANYThis job requires network connectivity.
BackgroundFetch.NETWORK_TYPE_CELLULARThis job requires network connectivity that is a cellular network.
BackgroundFetch.NETWORK_TYPE_UNMETEREDThis job requires network connectivity that is unmetered. Most WiFi networks are unmetered, as in "you can upload as much as you like".
BackgroundFetch.NETWORK_TYPE_NOT_ROAMINGThis job requires network connectivity that is not roaming (being outside the country of origin)

@config {Boolean} requiresBatteryNotLow [false]

Specify that to run this job, the device's battery level must not be low.

This defaults to false. If true, the job will only run when the battery level is not low, which is generally the point where the user is given a "low battery" warning.

@config {Boolean} requiresStorageNotLow [false]

Specify that to run this job, the device's available storage must not be low.

This defaults to false. If true, the job will only run when the device is not in a low storage state, which is generally the point where the user is given a "low storage" warning.

@config {Boolean} requiresCharging [false]

Specify that to run this job, the device must be charging (or be a non-battery-powered device connected to permanent power, such as Android TV devices). This defaults to false.

@config {Boolean} requiresDeviceIdle [false]

When set true, ensure that this job will not run if the device is in active use.

The default state is false: that is, the for the job to be runnable even when someone is interacting with the device.

This state is a loose definition provided by the system. In general, it means that the device is not currently being used interactively, and has not been in use for some time. As such, it is a good time to perform resource heavy jobs. Bear in mind that battery usage will still be attributed to your application, and shown to the user in battery stats.


Methods

Method NameArgumentsReturnsNotes
configure{FetchConfig}, callbackFn, timeoutFnPromise<BackgroundFetchStatus>Configures the plugin's callbackFn and timeoutFn. This callback will fire each time a background-fetch event occurs in addition to events from #scheduleTask. The timeoutFn will be called when the OS reports your task is nearing the end of its allowed background-time.
scheduleTask{TaskConfig}Promise<boolean>Executes a custom task. The task will be executed in the same Callback function provided to #configure.
statuscallbackFnPromise<BackgroundFetchStatus>Your callback will be executed with the current status (Integer) 0: Restricted, 1: Denied, 2: Available. These constants are defined as BackgroundFetch.STATUS_RESTRICTED, BackgroundFetch.STATUS_DENIED, BackgroundFetch.STATUS_AVAILABLE (NOTE: Android will always return STATUS_AVAILABLE)
finishString taskIdVoidYou MUST call this method in your callbackFn provided to #configure in order to signal to the OS that your task is complete. iOS provides only 30s of background-time for a fetch-event -- if you exceed this 30s, iOS will kill your app.
startnonePromise<BackgroundFetchStatus>Start the background-fetch API. Your callbackFn provided to #configure will be executed each time a background-fetch event occurs. NOTE the #configure method automatically calls #start. You do not have to call this method after you #configure the plugin
stop[taskId:String]Promise<boolean>Stop the background-fetch API and all #scheduleTask from firing events. Your callbackFn provided to #configure will no longer be executed. If you provide an optional taskId, only that #scheduleTask will be stopped.

Debugging

iOS

🆕 BGTaskScheduler API for iOS 13+

  • ⚠️ At the time of writing, the new task simulator does not yet work in Simulator; Only real devices.
  • See Apple docs Starting and Terminating Tasks During Development
  • After running your app in XCode, Click the [||] button to initiate a Breakpoint.
  • In the console (lldb), paste the following command (Note: use cursor up/down keys to cycle through previously run commands):
e -l objc -- (void)[[BGTaskScheduler sharedScheduler] _simulateLaunchForTaskWithIdentifier:@"com.transistorsoft.fetch"]
  • Click the [ > ] button to continue. The task will execute and the Callback function provided to BackgroundFetch.configure will receive the event.

Simulating task-timeout events

  • Only the new BGTaskScheduler api supports simulated task-timeout events. To simulate a task-timeout, your fetchCallback must not call BackgroundFetch.finish(taskId):
let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15
}, async (taskId) => {  // <-- Event callback.
  // This is the task callback.
  console.log("[BackgroundFetch] taskId", taskId);
  //BackgroundFetch.finish(taskId); // <-- Disable .finish(taskId) when simulating an iOS task timeout
}, async (taskId) => {  // <-- Event timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  print("[BackgroundFetch] TIMEOUT taskId:", taskId);
  BackgroundFetch.finish(taskId);
});
  • Now simulate an iOS task timeout as follows, in the same manner as simulating an event above:
e -l objc -- (void)[[BGTaskScheduler sharedScheduler] _simulateExpirationForTaskWithIdentifier:@"com.transistorsoft.fetch"]

Old BackgroundFetch API

  • Simulate background fetch events in XCode using Debug->Simulate Background Fetch
  • iOS can take some hours or even days to start a consistently scheduling background-fetch events since iOS schedules fetch events based upon the user's patterns of activity. If Simulate Background Fetch works, your can be sure that everything is working fine. You just need to wait.

Android

  • Observe plugin logs in $ adb logcat:
$ adb logcat *:S ReactNative:V ReactNativeJS:V TSBackgroundFetch:V
  • Simulate a background-fetch event on a device (insert <your.application.id>) (only works for sdk 21+:
$ adb shell cmd jobscheduler run -f <your.application.id> 999
  • For devices with sdk <21, simulate a "Headless JS" event with (insert <your.application.id>)
$ adb shell am broadcast -a <your.application.id>.event.BACKGROUND_FETCH

Download Details:
Author: transistorsoft
Source Code: https://github.com/transistorsoft/react-native-background-fetch
License: MIT license

#react  #reactnative  #mobileapp  #javascript 

Tamia  Walter

Tamia Walter

1596754901

Testing Microservices Applications

The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.

This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?

A Brave New World

Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.

Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.

Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.

Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.

The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.

Keep in mind that there are additional things to focus on when testing microservices.

  • Microservices rely on network communications to talk to each other, so network reliability and requirements must be part of the testing.
  • Automation and infrastructure elements are now added as codes, and you have to make sure that they also run properly when microservices are pushed through the pipeline
  • While containerization is universal, you still have to pay attention to specific dependencies and create a testing strategy that allows for those dependencies to be included

Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.

Contract Testing as an Approach

As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.

Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.

Ways to Test Microservices

It is easy to fall into the trap of making testing microservices complicated, but there are ways to avoid this problem. Testing microservices doesn’t have to be complicated at all when you have the right strategy in place.

There are several ways to test microservices too, including:

  • Unit testing: Which allows developers to test microservices in a granular way. It doesn’t limit testing to individual microservices, but rather allows developers to take a more granular approach such as testing individual features or runtimes.
  • Integration testing: Which handles the testing of microservices in an interactive way. Microservices still need to work with each other when they are deployed, and integration testing is a key process in making sure that they do.
  • End-to-end testing: Which⁠—as the name suggests⁠—tests microservices as a complete app. This type of testing enables the testing of features, UI, communications, and other components that construct the app.

What’s important to note is the fact that these testing approaches allow for asynchronous testing. After all, asynchronous development is what makes developing microservices very appealing in the first place. By allowing for asynchronous testing, you can also make sure that components or microservices can be updated independently to one another.

#blog #microservices #testing #caylent #contract testing #end-to-end testing #hoverfly #integration testing #microservices #microservices architecture #pact #testing #unit testing #vagrant #vcr

Software Testing 101: Regression Tests, Unit Tests, Integration Tests

Automation and segregation can help you build better software
If you write automated tests and deliver them to the customer, he can make sure the software is working properly. And, at the end of the day, he paid for it.

Ok. We can segregate or separate the tests according to some criteria. For example, “white box” tests are used to measure the internal quality of the software, in addition to the expected results. They are very useful to know the percentage of lines of code executed, the cyclomatic complexity and several other software metrics. Unit tests are white box tests.

#testing #software testing #regression tests #unit tests #integration tests

Dejah  Reinger

Dejah Reinger

1599859380

How to Do API Testing?

Nowadays API testing is an integral part of testing. There are a lot of tools like postman, insomnia, etc. There are many articles that ask what is API, What is API testing, but the problem is How to do API testing? What I need to validate.

Note: In this article, I am going to use postman assertions for all the examples since it is the most popular tool. But this article is not intended only for the postman tool.

Let’s directly jump to the topic.

Let’s consider you have an API endpoint example http://dzone.com/getuserDetails/{{username}} when you send the get request to that URL it returns the JSON response.

My API endpoint is http://dzone.com/getuserDetails/{{username}}

The response is in JSON format like below

JSON

{
  "jobTitle": "string",
  "userid": "string",
  "phoneNumber": "string",
  "password": "string",
  "email": "user@example.com",
  "firstName": "string",
  "lastName": "string",
  "userName": "string",
  "country": "string",
  "region": "string",
  "city": "string",
  "department": "string",
  "userType": 0
}

In the JSON we can see there are properties and associated values.

Now, For example, if we need details of the user with the username ‘ganeshhegde’ we need to send a **GET **request to **http://dzone.com/getuserDetails/ganeshhegde **

dzone.com

Now there are two scenarios.

1. Valid Usecase: User is available in the database and it returns user details with status code 200

2. Invalid Usecase: User is Unavailable/Invalid user in this case it returns status with code 404 with not found message.

#tutorial #performance #api #test automation #api testing #testing and qa #application programming interface #testing as a service #testing tutorial #api test