Tidying Up Your PHPUnit Tests with Class-Based Model Factories

As you begin writing automated tests, one of the first questions you will find yourself asking is, “How do I make it clear what this test is accomplishing?” It’s important for tests to have a natural and logical flow that any future developer can follow, but that’s easier said than done.

In order to solve this issue, many developers format their tests in the structure of “arrange, act, assert.” First, you create the world that your test will run in; then you trigger an action; and finally, you verify that any changes caused by that action match your expectations.

After using this structure for a while, I learned that my tests were prone to becoming top-heavy. As your application increases in complexity, you will find yourself spending more and more time on the “arrange” step, and before you know it, this code has bloated to become three times as long as the other steps. While Laravel offers tools such as model factories to help address this issue, it does not take long for them to begin to feel underpowered. Let’s examine this problem and my preferred solution to it: class-based model factories.

#testing #php #phpunit tests

What is GEEK

Buddha Community

Tidying Up Your PHPUnit Tests with Class-Based Model Factories
Lawrence  Lesch

Lawrence Lesch

1662107520

Superdom: Better and Simpler ES6 DOM Manipulation

Superdom

You have dom. It has all the DOM virtually within it. Use that power:

// Fetch all the page links
let links = dom.a.href;

// Links open in a new tab
dom.a.target = '_blank';

Only for modern browsers

Getting started

Simply use the CDN via unpkg.com:

<script src="https://unpkg.com/superdom@1"></script>

Or use npm or bower:

npm|bower install superdom --save

Select

It always returns an array with the matched elements. Get all the elements that match the selector:

// Simple element selector into an array
let allLinks = dom.a;

// Loop straight on the selection
dom.a.forEach(link => { ... });

// Combined selector
let importantLinks = dom['a.important'];

There are also some predetermined elements, such as id, class and attr:

// Select HTML Elements by id:
let main = dom.id.main;

// by class:
let buttons = dom.class.button;

// or by attribute:
let targeted = dom.attr.target;
let targeted = dom.attr['target="_blank"'];

Generate

Use it as a function or a tagged template literal to generate DOM fragments:

// Not a typo; tagged template literals
let link = dom`<a href="https://google.com/">Google</a>`;

// It is the same as
let link = dom('<a href="https://google.com/">Google</a>');

Delete elements

Delete a piece of the DOM

// Delete all of the elements with the class .google
delete dom.class.google;   // Is this an ad-block rule?

Attributes

You can easily manipulate attributes right from the dom node. There are some aliases that share the syntax of the attributes such as html and text (aliases for innerHTML and textContent). There are others that travel through the dom such as parent (alias for parentNode) and children. Finally, class behaves differently as explained below.

Get attributes

The fetching will always return an array with the element for each of the matched nodes (or undefined if not there):

// Retrieve all the urls from the page
let urls = dom.a.href;     // #attr-list
  // ['https://google.com', 'https://facebook.com/', ...]

// Get an array of the h2 contents (alias of innerHTML)
let h2s = dom.h2.html;     // #attr-alias
  // ['Level 2 header', 'Another level 2 header', ...]

// Get whether any of the attributes has the value "_blank"
let hasBlank = dom.class.cta.target._blank;    // #attr-value
  // true/false

You also use these:

  • html (alias of innerHTML): retrieve a list of the htmls
  • text (alias of textContent): retrieve a list of the htmls
  • parent (alias of parentNode): travel up one level
  • children: travel down one level

Set attributes

// Set target="_blank" to all links
dom.a.target = '_blank';     // #attr-set
dom.class.tableofcontents.html = `
  <ul class="tableofcontents">
    ${dom.h2.map(h2 => `
      <li>
        <a href="#${h2.id}">
          ${h2.innerHTML}
        </a>
      </li>
    `).join('')}
  </ul>
`;

Remove an attribute

To delete an attribute use the delete keyword:

// Remove all urls from the page
delete dom.a.href;

// Remove all ids
delete dom.a.id;

Classes

It provides an easy way to manipulate the classes.

Get classes

To retrieve whether a particular class is present or not:

// Get an array with true/false for a single class
let isTest = dom.a.class.test;     // #class-one

For a general method to retrieve all classes you can do:

// Get a list of the classes of each matched element
let arrays = dom.a.class;     // #class-arrays
  // [['important'], ['button', 'cta'], ...]

// If you want a plain list with all of the classes:
let flatten = dom.a.class._flat;     // #class-flat
  // ['important', 'button', 'cta', ...]

// And if you just want an string with space-separated classes:
let text = dom.a.class._text;     // #class-text
  // 'important button cta ...'

Add a class

// Add the class 'test' (different ways)
dom.a.class.test = true;    // #class-make-true
dom.a.class = 'test';       // #class-push

Remove a class

// Remove the class 'test'
dom.a.class.test = false;    // #class-make-false

Manipulate

Did we say it returns a simple array?

dom.a.forEach(link => link.innerHTML = 'I am a link');

But what an interesting array it is; indeed we are also proxy'ing it so you can manipulate its sub-elements straight from the selector:

// Replace all of the link's html with 'I am a link'
dom.a.html = 'I am a link';

Of course we might want to manipulate them dynamically depending on the current value. Just pass it a function:

// Append ' ^_^' to all of the links in the page
dom.a.html = html => html + ' ^_^';

// Same as this:
dom.a.forEach(link => link.innerHTML = link.innerHTML + ' ^_^');

Note: this won't work dom.a.html += ' ^_^'; for more than 1 match (for reasons)

Or get into genetics to manipulate the attributes:

dom.a.attr.target = '_blank';

// Only to external sites:
let isOwnPage = el => /^https?\:\/\/mypage\.com/.test(el.getAttribute('href'));
dom.a.attr.target = (prev, i, element) => isOwnPage(element) ? '' : '_blank';

Events

You can also handle and trigger events:

// Handle click events for all <a>
dom.a.on.click = e => ...;

// Trigger click event for all <a>
dom.a.trigger.click;

Testing

We are using Jest as a Grunt task for testing. Install Jest and run in the terminal:

grunt watch

Download Details:

Author: franciscop
Source Code: https://github.com/franciscop/superdom 
License: MIT license

#javascript #es6 #dom 

Tidying Up Your PHPUnit Tests with Class-Based Model Factories

As you begin writing automated tests, one of the first questions you will find yourself asking is, “How do I make it clear what this test is accomplishing?” It’s important for tests to have a natural and logical flow that any future developer can follow, but that’s easier said than done.

In order to solve this issue, many developers format their tests in the structure of “arrange, act, assert.” First, you create the world that your test will run in; then you trigger an action; and finally, you verify that any changes caused by that action match your expectations.

After using this structure for a while, I learned that my tests were prone to becoming top-heavy. As your application increases in complexity, you will find yourself spending more and more time on the “arrange” step, and before you know it, this code has bloated to become three times as long as the other steps. While Laravel offers tools such as model factories to help address this issue, it does not take long for them to begin to feel underpowered. Let’s examine this problem and my preferred solution to it: class-based model factories.

#testing #php #phpunit tests

Tamia  Walter

Tamia Walter

1596754901

Testing Microservices Applications

The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.

This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?

A Brave New World

Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.

Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.

Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.

Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.

The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.

Keep in mind that there are additional things to focus on when testing microservices.

  • Microservices rely on network communications to talk to each other, so network reliability and requirements must be part of the testing.
  • Automation and infrastructure elements are now added as codes, and you have to make sure that they also run properly when microservices are pushed through the pipeline
  • While containerization is universal, you still have to pay attention to specific dependencies and create a testing strategy that allows for those dependencies to be included

Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.

Contract Testing as an Approach

As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.

Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.

Ways to Test Microservices

It is easy to fall into the trap of making testing microservices complicated, but there are ways to avoid this problem. Testing microservices doesn’t have to be complicated at all when you have the right strategy in place.

There are several ways to test microservices too, including:

  • Unit testing: Which allows developers to test microservices in a granular way. It doesn’t limit testing to individual microservices, but rather allows developers to take a more granular approach such as testing individual features or runtimes.
  • Integration testing: Which handles the testing of microservices in an interactive way. Microservices still need to work with each other when they are deployed, and integration testing is a key process in making sure that they do.
  • End-to-end testing: Which⁠—as the name suggests⁠—tests microservices as a complete app. This type of testing enables the testing of features, UI, communications, and other components that construct the app.

What’s important to note is the fact that these testing approaches allow for asynchronous testing. After all, asynchronous development is what makes developing microservices very appealing in the first place. By allowing for asynchronous testing, you can also make sure that components or microservices can be updated independently to one another.

#blog #microservices #testing #caylent #contract testing #end-to-end testing #hoverfly #integration testing #microservices #microservices architecture #pact #testing #unit testing #vagrant #vcr

Software Testing 101: Regression Tests, Unit Tests, Integration Tests

Automation and segregation can help you build better software
If you write automated tests and deliver them to the customer, he can make sure the software is working properly. And, at the end of the day, he paid for it.

Ok. We can segregate or separate the tests according to some criteria. For example, “white box” tests are used to measure the internal quality of the software, in addition to the expected results. They are very useful to know the percentage of lines of code executed, the cyclomatic complexity and several other software metrics. Unit tests are white box tests.

#testing #software testing #regression tests #unit tests #integration tests

Dejah  Reinger

Dejah Reinger

1599859380

How to Do API Testing?

Nowadays API testing is an integral part of testing. There are a lot of tools like postman, insomnia, etc. There are many articles that ask what is API, What is API testing, but the problem is How to do API testing? What I need to validate.

Note: In this article, I am going to use postman assertions for all the examples since it is the most popular tool. But this article is not intended only for the postman tool.

Let’s directly jump to the topic.

Let’s consider you have an API endpoint example http://dzone.com/getuserDetails/{{username}} when you send the get request to that URL it returns the JSON response.

My API endpoint is http://dzone.com/getuserDetails/{{username}}

The response is in JSON format like below

JSON

{
  "jobTitle": "string",
  "userid": "string",
  "phoneNumber": "string",
  "password": "string",
  "email": "user@example.com",
  "firstName": "string",
  "lastName": "string",
  "userName": "string",
  "country": "string",
  "region": "string",
  "city": "string",
  "department": "string",
  "userType": 0
}

In the JSON we can see there are properties and associated values.

Now, For example, if we need details of the user with the username ‘ganeshhegde’ we need to send a **GET **request to **http://dzone.com/getuserDetails/ganeshhegde **

dzone.com

Now there are two scenarios.

1. Valid Usecase: User is available in the database and it returns user details with status code 200

2. Invalid Usecase: User is Unavailable/Invalid user in this case it returns status with code 404 with not found message.

#tutorial #performance #api #test automation #api testing #testing and qa #application programming interface #testing as a service #testing tutorial #api test