1595113200
Earth to Earth-22. I hope this is a time when things have gone ahead, and we have left the umpteen crises behind. This is the bajillionth article on git floating across the multiverse, and why should we consider this to be any different.
What is git? A life form in a remote planet asks. The human tears up. The excerpts of the conversation that ensued shall be duly paraphrased and translated — because honestly, live translation is an extremely resource-intensive process and we would not want to burden you with the same. If the adjacent xkcd comic is any indication, if there are two words to describe git, one of them is definitely — confusing. The second one might lift you up a little, maybe a lot, when we say that one of git’s many superpowers is that it is absolutely amazing.
Now that brings us neatly back to one question — What is git? And that also ties in with a second question of why we need it in the first place when you also have things like Subversion (duh!) and Mercurial (who is in no way related to Mercury, the Roman brother of Hermes — the Greek God, not the brand)
Setting a checkpoint in Minecraft
Git is a version control system. The idea behind git is that you can track changes in your project folder and store snapshots of how the project had looked at certain points in time. It tries to unclutter the ubiquitous problem of creating umpteen folders to maintain snapshots of your code by creating a virtual Checkpoint mechanic you find in games. It is especially helpful when we are collaborating with others, or finding instances of when certain changes were made and reverting them (if they break your existing infrastructure), if necessary. And it is also useful as a documentation tool if used properly with the right set of comments and commit messages. The most powerful aspect of git, and where it ascertains its supremacy over virtually any other version control system is that it was built to be distributed. And because it is distributed, there are certain weird things and quirks that don’t always make perfect sense.
With other version control systems (referred henceforth as vcs) like Subversion or Mercurial, you would notice that they are sequential — your version numbers follow a neat and simple 1,2,3,4,5… In git, you have this uber long commit ID that is a 160-bit long hash string that identifies versions or commits history checkpoints.
Now, while this was done to facilitate the unique naming of commits in a decentralized system, the question naturally pops up is: How likely is it that the hash generated for a future commit will coincide with the hash of some past commit?
The question is closely related to something we normally refer to as the Birthday paradox, from where we see that if we were to randomly select _n _from a set of N distinct elements, the probability of drawing the same element n more than once will be greater than half if — n ≥ 1.2√N.
Every time a commit is added to a git repository, a hash string that identifies this commit is generated. This hash is computed with the SHA-1 algorithm and is 160 bits long. Expressed in hexadecimal notation, such hashes are 40 character strings.
To go a bit further into the math of the probability of a _hash collision (without using scary figures) — _At a high rate where every human in the world (say, 7 billion) makes a commit every second, mankind would need nothing less than 6.66 million years to produce a number of commits large enough to create a hash collision with 50% probability!
Click here to read more about the Birthday paradox.
The life cycle of a project with git version control initialized starts with the git init
command, which initializes the entire set of operations that are to happen on the repository. What git init
does is it initializes a directory called .git
inside your project folder. Now, for other vcs, it mostly operates on a client-server model where you check-in your code synchronously by coordinating with, often manually, with other clients connected to the same centralized server.
In git, the .git
directory is essentially the folder with some metadata where all operations are performed. Since it is decentralized, there is no network communication. All operations are local and file CRUD operations happening inside the .git
directory.
In the git-verse, as we initialize the git tracker in a folder, the underlying mechanism slaps on these two additional zones on top of your working layer.
This brings us to another command — git add
that takes your files and moves them to the Staging area as a rough draft that you can later publish to your repository history. In this context, we can imagine staging
being this fantastical inter-dimensional layer that holds your data.
You generally use the command as git add .
or git add *
that adds all the relevant unstaged files in your working area to staging. You can also do a git add <filename>
to include specific files into this layer.
To undo this step, i.e. to get back data from staging into the working layer, we use the commands git reset
for a generic removal of everything from staging and git reset <filename>
if we just want to do that for a specific file.
We use another command called git commit
to move data from the staging layer to the Repository layer. This command takes the rough snapshot of your work that you have in your staging, where you add and remove files and changes, and saves that snapshot forever in the repository later.
#understanding #developer-tools #code #technology #git #visual studio code
1656151740
Flutter Console Coverage Test
This small dart tools is used to generate Flutter Coverage Test report to console
Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dev_dependencies:
test_cov_console: ^0.2.2
flutter pub get
Running "flutter pub get" in coverage... 0.5s
flutter test --coverage
00:02 +1: All tests passed!
flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
print_cov_constants.dart | 0.00 | 0.00 | 0.00 | no unit testing|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE> The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...> A list of contains string for files without unit testing
to be excluded from report
-l, --line It will print Lines & Uncovered Lines only
Branch & Functions coverage percentage will not be printed
-i, --ignore It will not print any file without unit testing
-m, --multi Report from multiple lcov.info files
-c, --csv Output to CSV file
-o, --output=<CSV-FILE> Full path of output CSV file
If not given, "coverage/test_cov_console.csv" will be used
-t, --total Print only the total coverage
Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM> Print only the whether total coverage is passed MINIMUM value or not
If the value >= MINIMUM, it will print PASSED, otherwise FAILED
Note: it will ignore all other option (if any), except -m
-h, --help Show this help
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
flutter pub run test_cov_console -c --output=coverage/test_coverage.csv
#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""
You can install the package from the command line:
dart pub global activate test_cov_console
The package has the following executables:
$ test_cov_console
Run this command:
With Dart:
$ dart pub add test_cov_console
With Flutter:
$ flutter pub add test_cov_console
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
test_cov_console: ^0.2.2
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:test_cov_console/test_cov_console.dart';
example/lib/main.dart
import 'package:flutter/material.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
// This makes the visual density adapt to the platform that you run
// the app on. For desktop platforms, the controls will be smaller and
// closer together (more dense) than on mobile platforms.
visualDensity: VisualDensity.adaptivePlatformDensity,
),
home: MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
MyHomePage({Key? key, required this.title}) : super(key: key);
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headline4,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console
License: BSD-3-Clause license
1604109000
Git has become ubiquitous as the preferred version control system (VCS) used by developers. Using Git adds immense value especially for engineering teams where several developers work together since it becomes critical to have a system of integrating everyone’s code reliably.
But with every powerful tool, especially one that involves collaboration with others, it is better to establish conventions to follow lest we shoot ourselves in the foot.
At DeepSource, we’ve put together some guiding principles for our own team that make working with a VCS like Git easier. Here are 5 simple rules you can follow:
Oftentimes programmers working on something get sidetracked into doing too many things when working on one particular thing — like when you are trying to fix one particular bug and you spot another one, and you can’t resist the urge to fix that as well. And another one. Soon, it snowballs and you end up with so many changes all going together in one commit.
This is problematic, and it is better to keep commits as small and focused as possible for many reasons, including:
Additionally, it helps you mentally parse changes you’ve made using git log
.
#open source #git #git basics #git tools #git best practices #git tutorials #git commit
1612860677
Google’s Verse by Verse allows the users to rekindle their old love for poetry. By offering innovative suggestions, the software aims to take users to a road less traveled.
#help the aspiring poets #google’s verse by verse #google’s latest project #verse by verse #write poetry #google
1597916460
There is no doubt that Git plays a significant role in software development. It allows developers to work on the same code base at the same time. Still, developers struggle for code quality. Why? They fail to follow git best practices. In this post, I will explain seven core best practices of Git and a Bonus Section.
Committing something to Git means that you have changed your code and want to save these changes as a new trusted version.
Version control systems will not limit you in how you commit your code.
But is it good? Not quite.
Because you are compromising code quality, and it will take more time to review code. So overall, team productivity will be reduced. The best practice is to make an atomic commit.
When you do an atomic commit, you’re committing only one change. It might be across multiple files, but it’s one single change.
Many developers make some changes, then commit, then push. And I have seen many repositories with unwanted files like dll, pdf, etc.
You can ask two questions to yourself, before check-in your code into the repository
You can simply use the .gitignore file to avoid unwanted files in the repository. If you are working on more then one repo, it’s easy to use a global .gitignore file (without adding or pushing). And .gitignore file adds clarity and helps you to keep your code clean. What you can commit, and it will automatically ignore the unwanted files like autogenerated files like .dll and .class, etc.
#git basics #git command #git ignore #git best practices #git tutorial for beginners #git tutorials
1601157360
Hello all, nowadays most of the development teams using GIT version control, some of you may have a requirement of mirroring your team’s git changes from one server to another Git server. This article will help you to achieve the Git mirroring between one server to another server.
I got one assignment wherein there will be 2 Git Servers, development will happen in one Git server and the changes should be synchronized to another Git server at regular intervals. But in my case, the complexity is both the servers are in different restricted network. So I have done the small experiment and it worked. And I am sharing the steps to you all in this article.
Main GIT Server: Let’s take our main git server is located in our office and can be accessed only in-office network.
**Mirror GIT Server: **The mirror server is located at the vendor/client-side, which can be accessible in a normal internet connection but not with our office network. Since the office proxy will block the outside URL’s.
#devops #git #git and github #git best practices #git cloning #git server