Lowa Alice

Lowa Alice

1624402800

JavaScript if else (tutorial). DO NOT MISS!!!

JavaScript if else made simple.

📺 The video in this post was made by Programming with Mosh
The origin of the article: https://www.youtube.com/watch?v=IsG4Xd6LlsM&list=PLTjRvDozrdlxEIuOBZkMAK5uiqp8rHUax&index=7
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#javascript #if else #javascript if else #javascript if else (tutorial)

What is GEEK

Buddha Community

JavaScript if else (tutorial). DO NOT MISS!!!
Lowa Alice

Lowa Alice

1624402800

JavaScript if else (tutorial). DO NOT MISS!!!

JavaScript if else made simple.

📺 The video in this post was made by Programming with Mosh
The origin of the article: https://www.youtube.com/watch?v=IsG4Xd6LlsM&list=PLTjRvDozrdlxEIuOBZkMAK5uiqp8rHUax&index=7
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#javascript #if else #javascript if else #javascript if else (tutorial)

Terry  Tremblay

Terry Tremblay

1602147513

Now Learn JavaScript Programming Language With Microsoft

icrosoft has released a new series of video tutorials on YouTube for novice programmers to get a hands-on renowned programming language — JavaScript.

This isn’t the first attempt by Microsoft to come up with video tutorials by beginner programmers. The company also has a series of YouTube tutorials on Python for beginners.

For JavaScript, Microsoft has launched a series of 51 videos as ‘Beginner’s Series to JavaScript,’ for young programmers, developers and coders who are interested in building browser applications using JavaScript. These video tutorials will also help programmers and coders to use relevant software development kits (SDKs) and JavaScript frameworks, such as Google’s Angular.


“Learning a new framework or development environment is made even more difficult when you don’t know the programming language,” stated on the Microsoft Developer channel on YouTube. “Fortunately, we’re here to help! We’ve created this series of videos to focus on the core concepts of JavaScript.”

It further stated — while the tutorials don’t cover every aspect of JavaScript, it indeed will help in building a foundation from which one can continue to grow. By the end of this series, Microsoft claims that the novice programmers will be able to work through tutorials, quick starts, books, and other resources, continuing to grow on their own.


#news #javascript #javascript tutorial #javascript tutorials #microsoft tutorials on javascript

Cyril  Parisian

Cyril Parisian

1661092140

Udlib: Header-only Series Of C++20 Usermode Utilities

Overview and roadmap

FeatureAvailability
xorstr
stack strings
rot string
signature scans
segment wrappers
module wrappers
shellcode wrappers
constexpr emittion✅ (clang only)
constexpr fnv-1a hashing
lazy importer🟦 (untested)
disassembler engine
memory scanning utility

ud.hpp

#pragma once
#include <optional>
#include <string>
#include <vector>
#include <array>
#include <algorithm>
#include <string_view>
#include <fstream>
#include <unordered_map>

#include <Windows.h>
#include <winternl.h>

#if defined(_MSC_VER)
#define UD_FORCEINLINE __forceinline
#pragma warning( push )
#pragma warning( disable : 4244 4083 )
#else
#define UD_FORCEINLINE __attribute__( ( always_inline ) )
#endif

#define ud_encode_c( str ) ud::rot::decode( ud::rot::rot_t<str>{ } ).data
#define ud_encode( str ) std::string_view( ud::rot::decode( ud::rot::rot_t<str>{ } ) )

#define ud_xorstr_c( str ) ud::xorstr::decrypt( ud::xorstr::xorstr_t< str, __COUNTER__ + 1 ^ 0x90 >{ } ).data
#define ud_xorstr( str ) std::string_view{ ud::xorstr::decrypt( ud::xorstr::xorstr_t< str, __COUNTER__ + 1 ^ 0x90 >{ } ) }

#define ud_stack_str( str ) ud::details::comp_string_t{ str }.data

#define ud_import( mod, func )	reinterpret_cast< decltype( &func ) >( ud::lazy_import::find_module_export< TEXT( mod ), #func >( ) )
#define ud_first_import( func ) reinterpret_cast< decltype( &func ) >( ud::lazy_import::find_first_export< #func >( ) )

// preprocessed settings due to MSVC (not clang or gcc) throwing errors even in `if constexpr` bodies
#define UD_USE_SEH false

namespace ud
{
    namespace details
    {
        struct LDR_DATA_TABLE_ENTRY32
        {
            LIST_ENTRY in_load_order_links;

            std::uint8_t pad[ 16 ];
            std::uintptr_t dll_base;
            std::uintptr_t entry_point;
            std::size_t size_of_image;

            UNICODE_STRING full_name;
            UNICODE_STRING base_name;
        };

        struct LDR_DATA_TABLE_ENTRY64
        {
            LIST_ENTRY in_load_order_links;
            LIST_ENTRY dummy_0;
            LIST_ENTRY dummy_1;

            std::uintptr_t dll_base;
            std::uintptr_t entry_point;
            union {
                unsigned long size_of_image;
                const char* _dummy;
            };

            UNICODE_STRING full_name;
            UNICODE_STRING base_name;
        };

#if defined( _M_X64 )
        using LDR_DATA_TABLE_ENTRY = LDR_DATA_TABLE_ENTRY64;
#else
        using LDR_DATA_TABLE_ENTRY = LDR_DATA_TABLE_ENTRY32;
#endif

        template < std::size_t sz >
        struct comp_string_t
        {
            std::size_t size = sz;
            char data[ sz ]{ };

            comp_string_t( ) = default;
            consteval explicit comp_string_t( const char( &str )[ sz ] )
            {
                std::copy_n( str, sz, data );
            }

            constexpr explicit operator std::string_view( ) const
            {
                return { data, size };
            }
        };

        template < std::size_t sz >
        struct wcomp_string_t
        {
            std::size_t size = sz;
            wchar_t data[ sz ]{ };

            wcomp_string_t( ) = default;
            consteval explicit wcomp_string_t( const wchar_t( &str )[ sz ] )
            {
                std::copy_n( str, sz, data );
            }

            constexpr explicit operator std::wstring_view( ) const
            {
                return { data, size };
            }
        };

        inline constexpr std::uint64_t multiplier = 0x5bd1e995;
        inline consteval std::uint64_t get_seed( )
        {
            constexpr auto time_str = __TIME__;
            constexpr auto time_len = sizeof( __TIME__ ) - 1;

            constexpr auto time_int = [ ] ( const char* const str, const std::size_t len )
            {
                auto res = 0ull;
                for ( auto i = 0u; i < len; ++i )
                    if ( str[ i ] >= '0' && str[ i ] <= '9' )
                        res = res * 10 + str[ i ] - '0';

                return res;
            }( time_str, time_len );

            return time_int;
        }

        template < auto v >
        struct constant_t
        {
            enum : decltype( v )
            {
                value = v
            };
        };

        template < auto v >
        inline constexpr auto constant_v = constant_t< v >::value;

#undef max
#undef min

        template < std::uint32_t seq >
        consteval std::uint64_t recursive_random( )
        {
            constexpr auto seed = get_seed( );
            constexpr auto mask = std::numeric_limits< std::uint64_t >::max( );

            constexpr auto x = ( ( seq * multiplier ) + seed ) & mask;
            constexpr auto x_prime = ( x >> 0x10 ) | ( x << 0x10 );

            return constant_v< x_prime >;
        }
    }

    namespace rot
    {
        template < details::comp_string_t str >
        struct rot_t
        {
            char rotted[ str.size ];

            [[nodiscard]] consteval const char* encoded( ) const
            {
                return rotted;
            }

            consteval rot_t( )
            {
                for ( auto i = 0u; i < str.size; ++i )
                {
                    const auto c = str.data[ i ];
                    const auto set = c >= 'A' && c <= 'Z' ? 'A' : c >= 'a' && c <= 'z' ? 'a' : c;

                    if ( set == 'a' || set == 'A' )
                        rotted[ i ] = ( c - set - 13 + 26 ) % 26 + set;

                    else
                        rotted[ i ] = c;
                }
            }
        };

        template < details::comp_string_t str >
        UD_FORCEINLINE details::comp_string_t< str.size > decode( rot_t< str > encoded )
        {
            details::comp_string_t< str.size > result{ };

            for ( auto i = 0u; i < str.size; ++i )
            {
                const auto c = encoded.rotted[ i ];
                const auto set = c >= 'A' && c <= 'Z' ? 'A' : c >= 'a' && c <= 'z' ? 'a' : c;

                if ( set == 'a' || set == 'A' )
                    result.data[ i ] = ( c - set - 13 + 26 ) % 26 + set;

                else
                    result.data[ i ] = c;
            }

            return result;
        }
    }

    namespace fnv
    {
        inline constexpr std::uint32_t fnv_1a( const char* const str, const std::size_t size )
        {
            constexpr auto prime = 16777619u;

            std::uint32_t hash = 2166136261;

            for ( auto i = 0u; i < size; ++i )
            {
                hash ^= str[ i ];
                hash *= prime;
            }

            return hash;
        }

        inline constexpr std::uint32_t fnv_1a( const wchar_t* const str, const std::size_t size )
        {
            constexpr auto prime = 16777619u;

            std::uint32_t hash = 2166136261;

            for ( auto i = 0u; i < size; ++i )
            {
                hash ^= static_cast< char >( str[ i ] );
                hash *= prime;
            }

            return hash;
        }

        inline constexpr std::uint32_t fnv_1a( const std::wstring_view str )
        {
            return fnv_1a( str.data( ), str.size( ) );
        }

        inline constexpr std::uint32_t fnv_1a( const std::string_view str )
        {
            return fnv_1a( str.data( ), str.size( ) );
        }

        template < details::comp_string_t str >
        consteval std::uint32_t fnv_1a( )
        {
            return fnv_1a( str.data, str.size );
        }

        template < details::wcomp_string_t str >
        consteval std::uint32_t fnv_1a( )
        {
            return fnv_1a( str.data, str.size );
        }
    }

    namespace xorstr
    {
        template < details::comp_string_t str, std::uint32_t key_multiplier >
        struct xorstr_t
        {
            char xored[ str.size ];

            [[nodiscard]] consteval std::uint64_t xor_key( ) const
            {
                return details::recursive_random< key_multiplier >( );
            }

            consteval xorstr_t( )
            {
                for ( auto i = 0u; i < str.size; ++i )
                    xored[ i ] = str.data[ i ] ^ xor_key( );
            }
        };

        template < details::comp_string_t str, std::uint32_t key_multiplier >
        UD_FORCEINLINE details::comp_string_t< str.size > decrypt( xorstr_t< str, key_multiplier > enc )
        {
            details::comp_string_t< str.size > result{ };

            for ( auto i = 0u; i < str.size; ++i )
            {
                const auto c = enc.xored[ i ];

                result.data[ i ] = c ^ enc.xor_key( );
            }

            return result;
        }
    }

    namespace lazy_import
    {
        UD_FORCEINLINE std::uintptr_t get_module_handle( const std::uint64_t hash )
        {
#if defined( _M_X64 )
            const auto peb = reinterpret_cast< const PEB* >( __readgsqword( 0x60 ) );
#else
            const auto peb = reinterpret_cast< const PEB* >( __readfsdword( 0x30 ) );
#endif

            const auto modules = reinterpret_cast< const LIST_ENTRY* >( peb->Ldr->InMemoryOrderModuleList.Flink );

            for ( auto i = modules->Flink; i != modules; i = i->Flink )
            {
                const auto entry = reinterpret_cast< const details::LDR_DATA_TABLE_ENTRY* >( i );

                const auto name = entry->base_name.Buffer;
                const auto len = entry->base_name.Length;

                if ( fnv::fnv_1a( static_cast< const wchar_t* >( name ), len ) == hash )
                    return entry->dll_base;
            }

            return 0;
        }

        UD_FORCEINLINE void* find_primitive_export( const std::uint64_t dll_hash, const std::uint64_t function_hash )
        {
            const auto module = get_module_handle( dll_hash );

            if ( !module )
                return nullptr;

            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( module );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( module + dos->e_lfanew );

            const auto exports = reinterpret_cast< const IMAGE_EXPORT_DIRECTORY* >( module + nt->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ].VirtualAddress );

            const auto names = reinterpret_cast< const std::uint32_t* >( module + exports->AddressOfNames );
            const auto ordinals = reinterpret_cast< const std::uint16_t* >( module + exports->AddressOfNameOrdinals );
            const auto functions = reinterpret_cast< const std::uint32_t* >( module + exports->AddressOfFunctions );

            for ( auto i = 0u; i < exports->NumberOfNames; ++i )
            {
                const auto name = reinterpret_cast< const char* >( module + names[ i ] );
                std::size_t len = 0;

                for ( ; name[ len ]; ++len );

                if ( fnv::fnv_1a( name, len ) == function_hash )
                    return reinterpret_cast< void* >( module + functions[ ordinals[ i ] ] );
            }

            return nullptr;
        }

        template < details::wcomp_string_t dll_name, details::comp_string_t function_name >
        UD_FORCEINLINE void* find_module_export( )
        {
            return find_primitive_export( fnv::fnv_1a< dll_name >( ), fnv::fnv_1a< function_name >( ) );
        }

        template < details::comp_string_t function_name >
        UD_FORCEINLINE void* find_first_export( )
        {
            constexpr auto function_hash = fnv::fnv_1a< function_name >( );

#if defined( _M_X64 )
            const auto peb = reinterpret_cast< const PEB* >( __readgsqword( 0x60 ) );
#else
            const auto peb = reinterpret_cast< const PEB* >( __readfsdword( 0x30 ) );
#endif

            const auto modules = reinterpret_cast< const LIST_ENTRY* >( peb->Ldr->InMemoryOrderModuleList.Flink );


            for ( auto i = modules->Flink; i != modules; i = i->Flink )
            {
                const auto entry = reinterpret_cast< const details::LDR_DATA_TABLE_ENTRY* >( i );

                const auto name = entry->base_name.Buffer;
                std::size_t len = 0;

                if ( !name )
                    continue;

                for ( ; name[ len ]; ++len );

                if ( const auto exp = find_primitive_export( fnv::fnv_1a( name, len ), function_hash ) )
                    return exp;
            }

            return nullptr;
        }
    }

    template < typename ty = std::uintptr_t >
    std::optional< ty > find_pattern_primitive( const std::uintptr_t start, const std::uintptr_t end, const std::string_view pattern )
    {
        std::vector< std::pair< bool, std::uint8_t > > bytes;

        for ( auto it = pattern.begin( ); it != pattern.end( ); ++it )
        {
            if ( *it == ' ' )
                continue;

            else if ( *it == '?' )
            {
                if ( it + 1 < pattern.end( ) && *( it + 1 ) == '?' )
                {
                    bytes.push_back( { true, 0x00 } );
                    ++it;
                }

                else
                    bytes.push_back( { false, 0x00 } );
            }

            else
            {
                if ( it + 1 == pattern.end( ) )
                    break;

                const auto get_byte = [ ] ( const std::string& x ) -> std::uint8_t
                {
                    return static_cast< std::uint8_t >( std::stoul( x, nullptr, 16 ) );
                };

                bytes.emplace_back( false, get_byte( std::string( it - 1, ( ++it ) + 1 ) ) );
            }
        }

        for ( auto i = reinterpret_cast< const std::uint8_t* >( start ); i < reinterpret_cast< const std::uint8_t* >( end ); )
        {
            auto found = true;
            for ( const auto& [ is_wildcard, byte ] : bytes )
            {
                ++i;

                if ( is_wildcard )
                    continue;

                if ( *i != byte )
                {
                    found = false;
                    break;
                }
            }

            if ( found )
                return ty( i - bytes.size( ) + 1 );
        }

        return std::nullopt;
    }

    struct segment_t
    {
        std::string_view name = "";
        std::uintptr_t start{ }, end{ };
        std::size_t size{ };

        template < typename ty = std::uintptr_t >
        std::optional< ty > find_pattern( const std::string_view pattern ) const
        {
            return find_pattern_primitive< ty >( start, end, pattern );
        }

        explicit segment_t( const std::string_view segment_name )
        {
            init( GetModuleHandle( nullptr ), segment_name );
        }

        segment_t( const void* const module, const std::string_view segment_name )
        {
            init( module, segment_name );
        }

        segment_t( const void* const handle, const IMAGE_SECTION_HEADER* section )
        {
            init( handle, section );
        }

    private:
        void init( const void* const handle, const IMAGE_SECTION_HEADER* section )
        {
            name = std::string_view( reinterpret_cast< const char* >( section->Name ), 8 );
            start = reinterpret_cast< std::uintptr_t >( handle ) + section->VirtualAddress;
            end = start + section->Misc.VirtualSize;
            size = section->Misc.VirtualSize;
        }

        void init( const void* const handle, const std::string_view segment_name )
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( handle );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( reinterpret_cast< const std::uint8_t* >( handle ) + dos->e_lfanew );

            const auto section = reinterpret_cast< const IMAGE_SECTION_HEADER* >( reinterpret_cast< const std::uint8_t* >( &nt->OptionalHeader ) + nt->FileHeader.SizeOfOptionalHeader );

            for ( auto i = 0u; i < nt->FileHeader.NumberOfSections; ++i )
            {
                if ( std::string_view( reinterpret_cast< const char* >( section[ i ].Name ), 8 ).find( segment_name ) != std::string_view::npos )
                {
                    start = reinterpret_cast< std::uintptr_t >( handle ) + section[ i ].VirtualAddress;
                    end = start + section[ i ].Misc.VirtualSize;
                    size = section[ i ].Misc.VirtualSize;
                    name = segment_name;
                    return;
                }
            }
        }
    };

#pragma code_seg( push, ".text" )
    template < auto... bytes>
    struct shellcode_t
    {
        static constexpr std::size_t size = sizeof...( bytes );
        __declspec( allocate( ".text" ) ) static constexpr std::uint8_t data[ ]{ bytes... };
    };
#pragma code_seg( pop )

    template < typename ty, auto... bytes >
    constexpr ty make_shellcode( )
    {
        return reinterpret_cast< const ty >( &shellcode_t< bytes... >::data );
    }

    template < std::uint8_t... bytes >
    UD_FORCEINLINE constexpr void emit( )
    {
#if defined( __clang__ ) || defined( __GNUC__ )
        constexpr std::uint8_t data[ ]{ bytes... };

        for ( auto i = 0u; i < sizeof...( bytes ); ++i )
            __asm volatile( ".byte %c0\t\n" :: "i" ( data[ i ] ) );
#endif
    }

    template < std::size_t size, std::uint32_t seed = __COUNTER__ + 0x69, std::size_t count = 0 >
    UD_FORCEINLINE constexpr void emit_random( )
    {
        if constexpr ( count < size )
        {
            constexpr auto random = details::recursive_random< seed >( );
            emit< static_cast< std::uint8_t >( random ) >( );
            emit_random< size, static_cast< std::uint32_t >( random )* seed, count + 1 >( );
        }
    }

    inline bool is_valid_page( const void* const data, const std::uint32_t flags = PAGE_READWRITE )
    {
        MEMORY_BASIC_INFORMATION mbi{ };

        if ( !VirtualQuery( data, &mbi, sizeof( mbi ) ) )
            return false;

        return mbi.Protect & flags;
    }

    struct export_t
    {
        std::string_view name;
        std::uint16_t ordinal{ };
        std::uintptr_t address{ };
    };

    struct module_t
    {
        std::string name;
        std::uintptr_t start, end;

        segment_t operator[ ]( const std::string_view segment_name ) const
        {
            return { reinterpret_cast< const void* >( start ), segment_name };
        }

        std::vector< export_t > get_exports( ) const
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( start );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( start + dos->e_lfanew );

            const auto directory_header = nt->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ];
            if ( !directory_header.VirtualAddress )
                return { };

            const auto export_dir = reinterpret_cast< const IMAGE_EXPORT_DIRECTORY* >( start + directory_header.VirtualAddress );
            const auto name_table = reinterpret_cast< const std::uint32_t* >( start + export_dir->AddressOfNames );
            const auto ord_table = reinterpret_cast< const std::uint16_t* >( start + export_dir->AddressOfNameOrdinals );
            const auto addr_table = reinterpret_cast< const std::uint32_t* >( start + export_dir->AddressOfFunctions );

            std::vector< export_t > exports( export_dir->NumberOfNames );

            for ( auto i = 0u; i < export_dir->NumberOfNames; ++i )
            {
                const auto name_str = reinterpret_cast< const char* >( start + name_table[ i ] );
                const auto ord = ord_table[ i ];
                const auto addr = start + addr_table[ ord ];

                exports[ i ] = { name_str, ord, addr };
            }

            return exports;
        }

        [[nodiscard]] std::vector< segment_t > get_segments( ) const
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( start );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( start + dos->e_lfanew );

            const auto section = reinterpret_cast< const IMAGE_SECTION_HEADER* >( reinterpret_cast< const std::uint8_t* >( &nt->OptionalHeader ) + nt->FileHeader.SizeOfOptionalHeader );

            std::vector< segment_t > segments;
            segments.reserve( nt->FileHeader.NumberOfSections );

            for ( auto i = 0u; i < nt->FileHeader.NumberOfSections; ++i )
            {
                const segment_t seg( dos, &section[ i ] );
                segments.push_back( seg );
            }

            return segments;
        }

        [[nodiscard]] std::vector< export_t > get_imports( ) const
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( start );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( start + dos->e_lfanew );

            const auto directory_header = &nt->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_IMPORT ];
            if ( !directory_header->VirtualAddress )
                return { };

            const auto import_dir = reinterpret_cast< const IMAGE_IMPORT_DESCRIPTOR* >( start + directory_header->VirtualAddress );
            std::vector< export_t > imports;

            for ( auto i = 0u;; ++i )
            {
                if ( !import_dir[ i ].OriginalFirstThunk )
                    break;

                const auto directory = &import_dir[ i ];

                const auto name_table = reinterpret_cast< const std::uint32_t* >( start + directory->OriginalFirstThunk );
                const auto addr_table = reinterpret_cast< const std::uint32_t* >( start + directory->FirstThunk );

                for ( auto j = 0u;; ++j )
                {
                    if ( !addr_table[ j ] )
                        break;

                    if ( !name_table[ j ] )
                        continue;

                    std::string_view name_str;

                    constexpr auto name_alignment = 2;

                    const auto addr = &addr_table[ j ];
                    const auto name_ptr = reinterpret_cast< const char* >( start + name_table[ j ] ) + name_alignment;

#if UD_USE_SEH
                    // using SEH here is not a very good solution
					// however, it's faster than querying that page protection to see if it's readable
					__try
					{
						name = name_ptr;
					}
					__except ( EXCEPTION_EXECUTE_HANDLER )
					{
						name = "";
					}
#else
                    // runtime overhead of ~3us compared to SEH on single calls
                    // on bulk calls it can go up to ~300-500us
                    name_str = is_valid_page( name_ptr, PAGE_READONLY ) ? name_ptr : "";
#endif

                    // emplace_back doesn't allow for implicit conversion, so we have to do it manually
                    imports.push_back( { name_str, static_cast< std::uint16_t >( j ), reinterpret_cast< std::uintptr_t >( addr ) } );
                }
            }

            return imports;
        }

        template < typename ty = std::uintptr_t >
        ty get_address( const std::string_view name ) const
        {
            for ( const auto& export_ : get_exports( ) )
            {
                if ( export_.name.find( name ) != std::string_view::npos )
                    return ty( export_.address );
            }

            return 0;
        }

        template < typename ty = std::uintptr_t >
        std::optional< ty > find_pattern( const std::string_view pattern ) const
        {
            return find_pattern_primitive< ty >( start, end, pattern );
        }

        [[nodiscard]] std::vector< std::string_view > get_strings( const std::size_t minimum_size = 0 ) const
        {
            std::vector< std::string_view > result;

            const auto rdata = ( *this )[ ".rdata" ];

            if ( !rdata.size )
                return { };

            const auto start = reinterpret_cast< const std::uint8_t* >( rdata.start );
            const auto end = reinterpret_cast< const std::uint8_t* >( rdata.end );

            for ( auto i = start; i < end; ++i )
            {
                if ( *i == 0 || *i > 127 )
                    continue;

                const auto str = reinterpret_cast< const char* >( i );
                const auto sz = std::strlen( str );

                if ( !sz || sz < minimum_size )
                    continue;

                result.emplace_back( str, sz );
                i += sz;
            }

            return result;
        }

        module_t( )
        {
            init( GetModuleHandle( nullptr ) );
        }

        explicit module_t( void* const handle )
        {
            init( handle );
        }

        explicit module_t( const std::string_view module_name )
        {
            init( GetModuleHandleA( module_name.data( ) ) );
        }

    private:
        void* module;

        void init( void* const handle )
        {
            module = handle;

            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( handle );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( reinterpret_cast< const std::uint8_t* >( handle ) + dos->e_lfanew );

            start = reinterpret_cast< std::uintptr_t >( handle );
            end = start + nt->OptionalHeader.SizeOfImage;

            char buffer[ MAX_PATH ];
            const auto sz = GetModuleFileNameA( static_cast< HMODULE >( handle ), buffer, MAX_PATH );

            name = sz ? std::string{ buffer, sz } : std::string{ };
        }
    };

    inline std::vector< module_t > get_modules( )
    {
        std::vector< module_t > result;

#if defined( _M_X64 )
        const auto peb = reinterpret_cast< const PEB* >( __readgsqword( 0x60 ) );
#else
        const auto peb = reinterpret_cast< const PEB* >( __readfsdword( 0x30 ) );
#endif

        const auto modules = reinterpret_cast< const LIST_ENTRY* >( peb->Ldr->InMemoryOrderModuleList.Flink );
        for ( auto i = modules->Flink; i != modules; i = i->Flink )
        {
            const auto entry = reinterpret_cast< const LDR_DATA_TABLE_ENTRY* >( i );

            if ( entry->Reserved2[ 0 ] || entry->DllBase )
                result.emplace_back( entry->Reserved2[ 0 ] ? entry->Reserved2[ 0 ] : entry->DllBase );
        }

        return result;
    }

    inline std::optional< module_t > get_module_at_address( const std::uintptr_t address )
    {
        for ( const auto& module : get_modules( ) )
        {
            if ( module.start <= address && address < module.end )
                return module;
        }

        return std::nullopt;
    }

    inline std::optional< export_t > get_export( const std::uintptr_t address )
    {
        for ( const auto& module : get_modules( ) )
        {
            if ( module.start <= address && address < module.end )
            {
                const auto exports = module.get_exports( );
                for ( const auto& export_ : exports )
                {
                    if ( export_.address == address )
                        return export_;
                }
            }
        }

        return std::nullopt;
    }

    template < typename rel_t, typename ty = std::uintptr_t >
    ty calculate_relative( const std::uintptr_t address, const std::uint8_t size, const std::uint8_t offset )
    {
        return ty( address + *reinterpret_cast< rel_t* >( address + offset ) + size );
    }
}

template < std::size_t size >
UD_FORCEINLINE std::ostream& operator<<( std::ostream& os, const ud::details::comp_string_t< size >& str )
{
    return os << std::string_view{ str.data, str.size };
}

#if defined( _MSC_VER )
#pragma warning( pop )
#endif

Author: AmJayden
Source code: https://github.com/AmJayden/udlib

#cpluplus 

wp codevo

wp codevo

1608042336

JavaScript Shopping Cart - Javascript Project for Beginners

https://youtu.be/5B5Hn9VvrVs

#shopping cart javascript #hopping cart with javascript #javascript shopping cart tutorial for beginners #javascript cart project #javascript tutorial #shopping cart

Lowa Alice

Lowa Alice

1624379820

JavaScript Tutorial for Beginners: Learn JavaScript in 1 Hour

Watch this JavaScript tutorial for beginners to learn JavaScript basics in one hour.
avaScript is one of the most popular programming languages in 2019. A lot of people are learning JavaScript to become front-end and/or back-end developers.

I’ve designed this JavaScript tutorial for beginners to learn JavaScript from scratch. We’ll start off by answering the frequently asked questions by beginners about JavaScript and shortly after we’ll set up our development environment and start coding.

Whether you’re a beginner and want to learn to code, or you know any programming language and just want to learn JavaScript for web development, this tutorial helps you learn JavaScript fast.

You don’t need any prior experience with JavaScript or any other programming languages. Just watch this JavaScript tutorial to the end and you’ll be writing JavaScript code in no time.

If you want to become a front-end developer, you have to learn JavaScript. It is the programming language that every front-end developer must know.

You can also use JavaScript on the back-end using Node. Node is a run-time environment for executing JavaScript code outside of a browser. With Node and Express (a popular JavaScript framework), you can build back-end of web and mobile applications.

If you’re looking for a crash course that helps you get started with JavaScript quickly, this course is for you.

⭐️TABLE OF CONTENT ⭐️

00:00 What is JavaScript
04:41 Setting Up the Development Environment
07:52 JavaScript in Browsers
11:41 Separation of Concerns
13:47 JavaScript in Node
16:11 Variables
21:49 Constants
23:35 Primitive Types
26:47 Dynamic Typing
30:06 Objects
35:22 Arrays
39:41 Functions
44:22 Types of Functions

📺 The video in this post was made by Programming with Mosh
The origin of the article: https://www.youtube.com/watch?v=W6NZfCO5SIk&list=PLTjRvDozrdlxEIuOBZkMAK5uiqp8rHUax&index=2
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#javascript #javascript tutorial #javascript tutorial for beginners #beginners