1596422460
In this blog, I’m going to explore the modern method for data serialization: protocol buffers (usually referred to as Protobuf). A protocol buffer is a binary communication format designed by Google that allows us to serialize and deserialize structured data.
But wait, the above tasks can also be done by other formats such as JSON or XML, so why did Google choose to design a new communication format? As we all know, almost all big tech giants are majorly focused on high performance and optimized speed. Due to the tremendous popularity of microservices architecture system, it’s been very difficult to manage the communication between thousands of services using text-based communication format as services generate thousands of requests to each other, load a network, and require a lot of resources. This is why we need a fast way to serialize transferring compact data between services. In this scenario Protocol buffers can save us a lot of time, money, and resources.
It is important to note that, although JSON and Protobuf do the same job, these technologies were designed with different goals and approaches in mind.
Protocol buffers were designed to be faster than JSON & XML by removing many responsibilities performed by these formats and focusing solely on the ability to serialize and deserialize data as fast as possible. Another important optimization is regarding how much network bandwidth is being utilized by making the transmitted data as small as possible.
Data transmitted during communication is in the form of binary which improves the speed of transmission compared to JSON’s string format.
Let’s take a look at the following example to get a clear understanding of this:
{
"status":"success",
"message":"found"
}
In the above JSON object, there are a total of 38 characters including spaces and characters like { } , "" :
which don’t possess any kind of informational data. So finally we have 2 curly brackets, 8 quotation marks, 2 colons, and 1 comma which added up to 13 characters, and keywords of JSON object occupies a total space of 6+7 = 13 characters whereas the information value of JSON object occupies 7 +5= 12 characters.
After summing up the result we get the following information:
#http2 #protobuf #grpc #microservices #protocol-buffers
1620466520
If you accumulate data on which you base your decision-making as an organization, you should probably think about your data architecture and possible best practices.
If you accumulate data on which you base your decision-making as an organization, you most probably need to think about your data architecture and consider possible best practices. Gaining a competitive edge, remaining customer-centric to the greatest extent possible, and streamlining processes to get on-the-button outcomes can all be traced back to an organization’s capacity to build a future-ready data architecture.
In what follows, we offer a short overview of the overarching capabilities of data architecture. These include user-centricity, elasticity, robustness, and the capacity to ensure the seamless flow of data at all times. Added to these are automation enablement, plus security and data governance considerations. These points from our checklist for what we perceive to be an anticipatory analytics ecosystem.
#big data #data science #big data analytics #data analysis #data architecture #data transformation #data platform #data strategy #cloud data platform #data acquisition
1620629020
The opportunities big data offers also come with very real challenges that many organizations are facing today. Often, it’s finding the most cost-effective, scalable way to store and process boundless volumes of data in multiple formats that come from a growing number of sources. Then organizations need the analytical capabilities and flexibility to turn this data into insights that can meet their specific business objectives.
This Refcard dives into how a data lake helps tackle these challenges at both ends — from its enhanced architecture that’s designed for efficient data ingestion, storage, and management to its advanced analytics functionality and performance flexibility. You’ll also explore key benefits and common use cases.
As technology continues to evolve with new data sources, such as IoT sensors and social media churning out large volumes of data, there has never been a better time to discuss the possibilities and challenges of managing such data for varying analytical insights. In this Refcard, we dig deep into how data lakes solve the problem of storing and processing enormous amounts of data. While doing so, we also explore the benefits of data lakes, their use cases, and how they differ from data warehouses (DWHs).
This is a preview of the Getting Started With Data Lakes Refcard. To read the entire Refcard, please download the PDF from the link above.
#big data #data analytics #data analysis #business analytics #data warehouse #data storage #data lake #data lake architecture #data lake governance #data lake management
1618039260
The COVID-19 pandemic disrupted supply chains and brought economies around the world to a standstill. In turn, businesses need access to accurate, timely data more than ever before. As a result, the demand for data analytics is skyrocketing as businesses try to navigate an uncertain future. However, the sudden surge in demand comes with its own set of challenges.
Here is how the COVID-19 pandemic is affecting the data industry and how enterprises can prepare for the data challenges to come in 2021 and beyond.
#big data #data #data analysis #data security #data integration #etl #data warehouse #data breach #elt
1597579680
CVDC 2020, the Computer Vision conference of the year, is scheduled for 13th and 14th of August to bring together the leading experts on Computer Vision from around the world. Organised by the Association of Data Scientists (ADaSCi), the premier global professional body of data science and machine learning professionals, it is a first-of-its-kind virtual conference on Computer Vision.
The second day of the conference started with quite an informative talk on the current pandemic situation. Speaking of talks, the second session “Application of Data Science Algorithms on 3D Imagery Data” was presented by Ramana M, who is the Principal Data Scientist in Analytics at Cyient Ltd.
Ramana talked about one of the most important assets of organisations, data and how the digital world is moving from using 2D data to 3D data for highly accurate information along with realistic user experiences.
The agenda of the talk included an introduction to 3D data, its applications and case studies, 3D data alignment, 3D data for object detection and two general case studies, which are-
This talk discussed the recent advances in 3D data processing, feature extraction methods, object type detection, object segmentation, and object measurements in different body cross-sections. It also covered the 3D imagery concepts, the various algorithms for faster data processing on the GPU environment, and the application of deep learning techniques for object detection and segmentation.
#developers corner #3d data #3d data alignment #applications of data science on 3d imagery data #computer vision #cvdc 2020 #deep learning techniques for 3d data #mesh data #point cloud data #uav data
1618457700
Data integration solutions typically advocate that one approach – either ETL or ELT – is better than the other. In reality, both ETL (extract, transform, load) and ELT (extract, load, transform) serve indispensable roles in the data integration space:
Because ETL and ELT present different strengths and weaknesses, many organizations are using a hybrid “ETLT” approach to get the best of both worlds. In this guide, we’ll help you understand the “why, what, and how” of ETLT, so you can determine if it’s right for your use-case.
#data science #data #data security #data integration #etl #data warehouse #data breach #elt #bid data