1596631020
R/Shiny apps are a great way of prototyping, and visualising your results in an interactive way while also exploiting the R data science and machine learning capabilities. R/Shiny apps are easy to build in a local development environment but they are somewhat harder to deploy. As they rely on the linux-based Shiny server to run.
Often we don’t want to spin up a whole linux machine or rely on the RStudio native offerings. In this article, I show how to quickly deploy this container on Microsoft’s Azure platform and make your R/Shiny available globally within seconds. In particular, I show how to set up the right services on Azure and deploy single containers and docker-composed multi-container architectures in the cloud. As such the focus of this article is on getting started and achieving results quickly, it is _not _intended to introduce how to use Azure app services in a production environment, although the set up I propose here can easily be productionised.
If you’re not familiar how to Dockerize R/Shiny containers, check out my previous article, where I showed how Docker can be used to package up a R/Shiny app (with an MS SQL Server based database) in a container, ready for deployment as an app service.
Since you have read so far, you’re probably already familiar with what Microsoft Azure is, but in brief: Azure is Microsoft’s cloud computing service, that allows to build, deploy and host a number of services in the cloud. From storage, to virtual machines to databases and app services.
While Amazon’s Web Service (AWS) was the first on the market and is now the largest provider of cloud computing services, Azure has been catching up quickly and is particularly appealing to those in larger organisations that already have close alliances with Microsoft’s other products. Beyond this, I personally feel that he way Azure has organised its Web Service offerings is somewhat more intuitive that the AWS offering.
When developing the Docker element of our R/Shiny apps our focus is all on images and containers. Azure has offerings for these products as well (think Azure Container Instances), but also offers what is called an App Service. The Azure App Service enables you to build and host web apps without managing infrastructure. It offers auto-scaling and high availability. As such we can think of the App Service as a fully managed infrastructure platform. This allows us to focus on getting the R/Shiny app deployed, without focussing too much on the backend.
To be able to replicate all steps of this article you need to have an Azure account, which you can create here for free. While the account is free, Microsoft will charge for the services you use. When you create a new account you will receive a budget to use playing around and a number of services are free for the initial twelve month. Beyond that, the easiest way forward is to have a pay-as-you-go account and pay for the services you need and when you need them. Azure will only charge you for the period you use the services. The basic version of the services I suggest here should cost you no more than 20 cent per day. To get a sense of the costs, check out the Azure Price Calculator.
You also need **Docker **installed on your local machine. If you haven’t done so already, you can download Docker Desktop here. Make sure Docker is running, by checking the Moby icon in your notifications area or going to your command line and typing docker --version
.
To interact with Azure through the command line you need to install Azure CLI, which you can download here. Once this is done you will be able to run Azure commands in your command line by typing az
followed by the command. Typing az --version
in your command line shows that Azure CLI is running and lists out the version you’re using.
You can run all lines of code of this article in your preferred command line interface. However, I personally recommend using Visual Studio Code. It also has great Azure, Web App, CLI and Docker extensions, offering code completion and visual control of your containers and Azure services.
There are three main ways of interacting with Azure: Firstly, through the Azure Portal, which offers a point-and-click GUI and is a great way to see at a glance what services you have running. Secondly, the Azure command line built in to the portal and referred to as “Cloud Shell”, which allows you to execute commands within the cloud environment, rather than pointing and clicking. Thirdly, through the command line on your local machine, which allows you to execute code in the cloud from your local machine. I prefer to use this third option, as it allows me to write and save my commands and also to push locally-created containers seamlessly onto Azure. Since I trust that you can write code as least as well I as do, I will build this article around the command line interaction with Azure.
Now that you have set up an Azure account and know how to interact with it, we can log onto the account through the command line, typing
az login
which will take you to the browser to enter your credentials.
Let’s get started creating the services we need:
The first thing we need to do is to create a Resource Group. In Azure, a resource group contains all services and resources that are used to architect a particular solution. It’s good practice to create one resource group with all services that share a lifecycle, as this makes it easier to deploy, update, and delete all related services. To create a resource group we type
az group create --name shinyapps --location northeurope
The resource group is called “shinyapps”, and I have asked for the group to be deployed on Azure’s North European (think Dublin) server farm. I live in Northern Europe so that makes sense for me, but Azure has server centres around the world and it might make more sense choosing another location depending on your requirements. Most larger centres offer a comprehensive set of services, but it’s worth checking if the required services are available when planning to deploy off the beaten track. Note that even when creating a resource group in one location you can also use services in a different location in that same group.
#docker #azure #r #shiny #web-app-development #microsoft-azure
1596631020
R/Shiny apps are a great way of prototyping, and visualising your results in an interactive way while also exploiting the R data science and machine learning capabilities. R/Shiny apps are easy to build in a local development environment but they are somewhat harder to deploy. As they rely on the linux-based Shiny server to run.
Often we don’t want to spin up a whole linux machine or rely on the RStudio native offerings. In this article, I show how to quickly deploy this container on Microsoft’s Azure platform and make your R/Shiny available globally within seconds. In particular, I show how to set up the right services on Azure and deploy single containers and docker-composed multi-container architectures in the cloud. As such the focus of this article is on getting started and achieving results quickly, it is _not _intended to introduce how to use Azure app services in a production environment, although the set up I propose here can easily be productionised.
If you’re not familiar how to Dockerize R/Shiny containers, check out my previous article, where I showed how Docker can be used to package up a R/Shiny app (with an MS SQL Server based database) in a container, ready for deployment as an app service.
Since you have read so far, you’re probably already familiar with what Microsoft Azure is, but in brief: Azure is Microsoft’s cloud computing service, that allows to build, deploy and host a number of services in the cloud. From storage, to virtual machines to databases and app services.
While Amazon’s Web Service (AWS) was the first on the market and is now the largest provider of cloud computing services, Azure has been catching up quickly and is particularly appealing to those in larger organisations that already have close alliances with Microsoft’s other products. Beyond this, I personally feel that he way Azure has organised its Web Service offerings is somewhat more intuitive that the AWS offering.
When developing the Docker element of our R/Shiny apps our focus is all on images and containers. Azure has offerings for these products as well (think Azure Container Instances), but also offers what is called an App Service. The Azure App Service enables you to build and host web apps without managing infrastructure. It offers auto-scaling and high availability. As such we can think of the App Service as a fully managed infrastructure platform. This allows us to focus on getting the R/Shiny app deployed, without focussing too much on the backend.
To be able to replicate all steps of this article you need to have an Azure account, which you can create here for free. While the account is free, Microsoft will charge for the services you use. When you create a new account you will receive a budget to use playing around and a number of services are free for the initial twelve month. Beyond that, the easiest way forward is to have a pay-as-you-go account and pay for the services you need and when you need them. Azure will only charge you for the period you use the services. The basic version of the services I suggest here should cost you no more than 20 cent per day. To get a sense of the costs, check out the Azure Price Calculator.
You also need **Docker **installed on your local machine. If you haven’t done so already, you can download Docker Desktop here. Make sure Docker is running, by checking the Moby icon in your notifications area or going to your command line and typing docker --version
.
To interact with Azure through the command line you need to install Azure CLI, which you can download here. Once this is done you will be able to run Azure commands in your command line by typing az
followed by the command. Typing az --version
in your command line shows that Azure CLI is running and lists out the version you’re using.
You can run all lines of code of this article in your preferred command line interface. However, I personally recommend using Visual Studio Code. It also has great Azure, Web App, CLI and Docker extensions, offering code completion and visual control of your containers and Azure services.
There are three main ways of interacting with Azure: Firstly, through the Azure Portal, which offers a point-and-click GUI and is a great way to see at a glance what services you have running. Secondly, the Azure command line built in to the portal and referred to as “Cloud Shell”, which allows you to execute commands within the cloud environment, rather than pointing and clicking. Thirdly, through the command line on your local machine, which allows you to execute code in the cloud from your local machine. I prefer to use this third option, as it allows me to write and save my commands and also to push locally-created containers seamlessly onto Azure. Since I trust that you can write code as least as well I as do, I will build this article around the command line interaction with Azure.
Now that you have set up an Azure account and know how to interact with it, we can log onto the account through the command line, typing
az login
which will take you to the browser to enter your credentials.
Let’s get started creating the services we need:
The first thing we need to do is to create a Resource Group. In Azure, a resource group contains all services and resources that are used to architect a particular solution. It’s good practice to create one resource group with all services that share a lifecycle, as this makes it easier to deploy, update, and delete all related services. To create a resource group we type
az group create --name shinyapps --location northeurope
The resource group is called “shinyapps”, and I have asked for the group to be deployed on Azure’s North European (think Dublin) server farm. I live in Northern Europe so that makes sense for me, but Azure has server centres around the world and it might make more sense choosing another location depending on your requirements. Most larger centres offer a comprehensive set of services, but it’s worth checking if the required services are available when planning to deploy off the beaten track. Note that even when creating a resource group in one location you can also use services in a different location in that same group.
#docker #azure #r #shiny #web-app-development #microsoft-azure
1649209980
A cross-platform command line REPL for the rapid experimentation and exploration of C#. It supports intellisense, installing NuGet packages, and referencing local .NET projects and assemblies.
(click to view animation)
C# REPL provides the following features:
C# REPL is a .NET 6 global tool, and runs on Windows 10, Mac OS, and Linux. It can be installed via:
dotnet tool install -g csharprepl
If you're running on Mac OS Catalina (10.15) or later, make sure you follow any additional directions printed to the screen. You may need to update your PATH variable in order to use .NET global tools.
After installation is complete, run csharprepl
to begin. C# REPL can be updated via dotnet tool update -g csharprepl
.
Run csharprepl
from the command line to begin an interactive session. The default colorscheme uses the color palette defined by your terminal, but these colors can be changed using a theme.json
file provided as a command line argument.
Type some C# into the prompt and press Enter to run it. The result, if any, will be printed:
> Console.WriteLine("Hello World")
Hello World
> DateTime.Now.AddDays(8)
[6/7/2021 5:13:00 PM]
To evaluate multiple lines of code, use Shift+Enter to insert a newline:
> var x = 5;
var y = 8;
x * y
40
Additionally, if the statement is not a "complete statement" a newline will automatically be inserted when Enter is pressed. For example, in the below code, the first line is not a syntactically complete statement, so when we press enter we'll go down to a new line:
> if (x == 5)
| // caret position, after we press Enter on Line 1
Finally, pressing Ctrl+Enter will show a "detailed view" of the result. For example, for the DateTime.Now
expression below, on the first line we pressed Enter, and on the second line we pressed Ctrl+Enter to view more detailed output:
> DateTime.Now // Pressing Enter shows a reasonable representation
[5/30/2021 5:13:00 PM]
> DateTime.Now // Pressing Ctrl+Enter shows a detailed representation
[5/30/2021 5:13:00 PM] {
Date: [5/30/2021 12:00:00 AM],
Day: 30,
DayOfWeek: Sunday,
DayOfYear: 150,
Hour: 17,
InternalKind: 9223372036854775808,
InternalTicks: 637579915804530992,
Kind: Local,
Millisecond: 453,
Minute: 13,
Month: 5,
Second: 0,
Ticks: 637579915804530992,
TimeOfDay: [17:13:00.4530992],
Year: 2021,
_dateData: 9860951952659306800
}
A note on semicolons: C# expressions do not require semicolons, but statements do. If a statement is missing a required semicolon, a newline will be added instead of trying to run the syntatically incomplete statement; simply type the semicolon to complete the statement.
> var now = DateTime.Now; // assignment statement, semicolon required
> DateTime.Now.AddDays(8) // expression, we don't need a semicolon
[6/7/2021 5:03:05 PM]
Use the #r
command to add assembly or nuget references.
#r "AssemblyName"
or #r "path/to/assembly.dll"
#r "path/to/project.csproj"
. Solution files (.sln) can also be referenced.#r "nuget: PackageName"
to install the latest version of a package, or #r "nuget: PackageName, 13.0.5"
to install a specific version (13.0.5 in this case).To run ASP.NET applications inside the REPL, start the csharprepl
application with the --framework
parameter, specifying the Microsoft.AspNetCore.App
shared framework. Then, use the above #r
command to reference the application DLL. See the Command Line Configuration section below for more details.
csharprepl --framework Microsoft.AspNetCore.App
The C# REPL supports multiple configuration flags to control startup, behavior, and appearance:
csharprepl [OPTIONS] [response-file.rsp] [script-file.csx] [-- <additional-arguments>]
Supported options are:
-r <dll>
or --reference <dll>
: Reference an assembly, project file, or nuget package. Can be specified multiple times. Uses the same syntax as #r
statements inside the REPL. For example, csharprepl -r "nuget:Newtonsoft.Json" "path/to/myproj.csproj"
-u <namespace>
or --using <namespace>
: Add a using statement. Can be specified multiple times.-f <framework>
or --framework <framework>
: Reference a shared framework. The available shared frameworks depends on the local .NET installation, and can be useful when running an ASP.NET application from the REPL. Example frameworks are:-t <theme.json>
or --theme <theme.json>
: Read a theme file for syntax highlighting. This theme file associates C# syntax classifications with colors. The color values can be full RGB, or ANSI color names (defined in your terminal's theme). The NO_COLOR standard is supported.--trace
: Produce a trace file in the current directory that logs CSharpRepl internals. Useful for CSharpRepl bug reports.-v
or --version
: Show version number and exit.-h
or --help
: Show help and exit.response-file.rsp
: A filepath of an .rsp file, containing any of the above command line options.script-file.csx
: A filepath of a .csx file, containing lines of C# to evaluate before starting the REPL. Arguments to this script can be passed as <additional-arguments>
, after a double hyphen (--
), and will be available in a global args
variable.If you have dotnet-suggest
enabled, all options can be tab-completed, including values provided to --framework
and .NET namespaces provided to --using
.
C# REPL is a standalone software application, but it can be useful to integrate it with other developer tools:
To add C# REPL as a menu entry in Windows Terminal, add the following profile to Windows Terminal's settings.json
configuration file (under the JSON property profiles.list
):
{
"name": "C# REPL",
"commandline": "csharprepl"
},
To get the exact colors shown in the screenshots in this README, install the Windows Terminal Dracula theme.
To use the C# REPL with Visual Studio Code, simply run the csharprepl
command in the Visual Studio Code terminal. To send commands to the REPL, use the built-in Terminal: Run Selected Text In Active Terminal
command from the Command Palette (workbench.action.terminal.runSelectedText
).
To add the C# REPL to the Windows Start Menu for quick access, you can run the following PowerShell command, which will start C# REPL in Windows Terminal:
$shell = New-Object -ComObject WScript.Shell
$shortcut = $shell.CreateShortcut("$env:appdata\Microsoft\Windows\Start Menu\Programs\csharprepl.lnk")
$shortcut.TargetPath = "wt.exe"
$shortcut.Arguments = "-w 0 nt csharprepl.exe"
$shortcut.Save()
You may also wish to add a shorter alias for C# REPL, which can be done by creating a .cmd
file somewhere on your path. For example, put the following contents in C:\Users\username\.dotnet\tools\csr.cmd
:
wt -w 0 nt csharprepl
This will allow you to launch C# REPL by running csr
from anywhere that accepts Windows commands, like the Window Run dialog.
This project is far from being the first REPL for C#. Here are some other projects; if this project doesn't suit you, another one might!
Visual Studio's C# Interactive pane is full-featured (it has syntax highlighting and intellisense) and is part of Visual Studio. This deep integration with Visual Studio is both a benefit from a workflow perspective, and a drawback as it's not cross-platform. As far as I know, the C# Interactive pane does not support NuGet packages or navigating to documentation/source code. Subjectively, it does not follow typical command line keybindings, so can feel a bit foreign.
csi.exe ships with C# and is a command line REPL. It's great because it's a cross platform REPL that comes out of the box, but it doesn't support syntax highlighting or autocompletion.
dotnet script allows you to run C# scripts from the command line. It has a REPL built-in, but the predominant focus seems to be as a script runner. It's a great tool, though, and has a strong community following.
dotnet interactive is a tool from Microsoft that creates a Jupyter notebook for C#, runnable through Visual Studio Code. It also provides a general framework useful for running REPLs.
Download Details:
Author: waf
Source Code: https://github.com/waf/CSharpRepl
License: MPL-2.0 License
1595494844
Are you leading an organization that has a large campus, e.g., a large university? You are probably thinking of introducing an electric scooter/bicycle fleet on the campus, and why wouldn’t you?
Introducing micro-mobility in your campus with the help of such a fleet would help the people on the campus significantly. People would save money since they don’t need to use a car for a short distance. Your campus will see a drastic reduction in congestion, moreover, its carbon footprint will reduce.
Micro-mobility is relatively new though and you would need help. You would need to select an appropriate fleet of vehicles. The people on your campus would need to find electric scooters or electric bikes for commuting, and you need to provide a solution for this.
To be more specific, you need a short-term electric bike rental app. With such an app, you will be able to easily offer micro-mobility to the people on the campus. We at Devathon have built Autorent exactly for this.
What does Autorent do and how can it help you? How does it enable you to introduce micro-mobility on your campus? We explain these in this article, however, we will touch upon a few basics first.
You are probably thinking about micro-mobility relatively recently, aren’t you? A few relevant insights about it could help you to better appreciate its importance.
Micro-mobility is a new trend in transportation, and it uses vehicles that are considerably smaller than cars. Electric scooters (e-scooters) and electric bikes (e-bikes) are the most popular forms of micro-mobility, however, there are also e-unicycles and e-skateboards.
You might have already seen e-scooters, which are kick scooters that come with a motor. Thanks to its motor, an e-scooter can achieve a speed of up to 20 km/h. On the other hand, e-bikes are popular in China and Japan, and they come with a motor, and you can reach a speed of 40 km/h.
You obviously can’t use these vehicles for very long commutes, however, what if you need to travel a short distance? Even if you have a reasonable public transport facility in the city, it might not cover the route you need to take. Take the example of a large university campus. Such a campus is often at a considerable distance from the central business district of the city where it’s located. While public transport facilities may serve the central business district, they wouldn’t serve this large campus. Currently, many people drive their cars even for short distances.
As you know, that brings its own set of challenges. Vehicular traffic adds significantly to pollution, moreover, finding a parking spot can be hard in crowded urban districts.
Well, you can reduce your carbon footprint if you use an electric car. However, electric cars are still new, and many countries are still building the necessary infrastructure for them. Your large campus might not have the necessary infrastructure for them either. Presently, electric cars don’t represent a viable option in most geographies.
As a result, you need to buy and maintain a car even if your commute is short. In addition to dealing with parking problems, you need to spend significantly on your car.
All of these factors have combined to make people sit up and think seriously about cars. Many people are now seriously considering whether a car is really the best option even if they have to commute only a short distance.
This is where micro-mobility enters the picture. When you commute a short distance regularly, e-scooters or e-bikes are viable options. You limit your carbon footprints and you cut costs!
Businesses have seen this shift in thinking, and e-scooter companies like Lime and Bird have entered this field in a big way. They let you rent e-scooters by the minute. On the other hand, start-ups like Jump and Lyft have entered the e-bike market.
Think of your campus now! The people there might need to travel short distances within the campus, and e-scooters can really help them.
What advantages can you get from micro-mobility? Let’s take a deeper look into this question.
Micro-mobility can offer several advantages to the people on your campus, e.g.:
#android app #autorent #ios app #mobile app development #app like bird #app like bounce #app like lime #autorent #bird scooter business model #bird scooter rental #bird scooter rental cost #bird scooter rental price #clone app like bird #clone app like bounce #clone app like lime #electric rental scooters #electric scooter company #electric scooter rental business #how do you start a moped #how to start a moped #how to start a scooter rental business #how to start an electric company #how to start electric scooterrental business #lime scooter business model #scooter franchise #scooter rental business #scooter rental business for sale #scooter rental business insurance #scooters franchise cost #white label app like bird #white label app like bounce #white label app like lime
1595491178
The electric scooter revolution has caught on super-fast taking many cities across the globe by storm. eScooters, a renovated version of old-school scooters now turned into electric vehicles are an environmentally friendly solution to current on-demand commute problems. They work on engines, like cars, enabling short traveling distances without hassle. The result is that these groundbreaking electric machines can now provide faster transport for less — cheaper than Uber and faster than Metro.
Since they are durable, fast, easy to operate and maintain, and are more convenient to park compared to four-wheelers, the eScooters trend has and continues to spike interest as a promising growth area. Several companies and universities are increasingly setting up shop to provide eScooter services realizing a would-be profitable business model and a ready customer base that is university students or residents in need of faster and cheap travel going about their business in school, town, and other surrounding areas.
In many countries including the U.S., Canada, Mexico, U.K., Germany, France, China, Japan, India, Brazil and Mexico and more, a growing number of eScooter users both locals and tourists can now be seen effortlessly passing lines of drivers stuck in the endless and unmoving traffic.
A recent report by McKinsey revealed that the E-Scooter industry will be worth― $200 billion to $300 billion in the United States, $100 billion to $150 billion in Europe, and $30 billion to $50 billion in China in 2030. The e-Scooter revenue model will also spike and is projected to rise by more than 20% amounting to approximately $5 billion.
And, with a necessity to move people away from high carbon prints, traffic and congestion issues brought about by car-centric transport systems in cities, more and more city planners are developing more bike/scooter lanes and adopting zero-emission plans. This is the force behind the booming electric scooter market and the numbers will only go higher and higher.
Companies that have taken advantage of the growing eScooter trend develop an appthat allows them to provide efficient eScooter services. Such an app enables them to be able to locate bike pick-up and drop points through fully integrated google maps.
It’s clear that e scooters will increasingly become more common and the e-scooter business model will continue to grab the attention of manufacturers, investors, entrepreneurs. All this should go ahead with a quest to know what are some of the best electric bikes in the market especially for anyone who would want to get started in the electric bikes/scooters rental business.
We have done a comprehensive list of the best electric bikes! Each bike has been reviewed in depth and includes a full list of specs and a photo.
https://www.kickstarter.com/projects/enkicycles/billy-were-redefining-joyrides
To start us off is the Billy eBike, a powerful go-anywhere urban electric bike that’s specially designed to offer an exciting ride like no other whether you want to ride to the grocery store, cafe, work or school. The Billy eBike comes in 4 color options – Billy Blue, Polished aluminium, Artic white, and Stealth black.
Price: $2490
Available countries
Available in the USA, Europe, Asia, South Africa and Australia.This item ships from the USA. Buyers are therefore responsible for any taxes and/or customs duties incurred once it arrives in your country.
Features
Specifications
Why Should You Buy This?
**Who Should Ride Billy? **
Both new and experienced riders
**Where to Buy? **Local distributors or ships from the USA.
Featuring a sleek and lightweight aluminum frame design, the 200-Series ebike takes your riding experience to greater heights. Available in both black and white this ebike comes with a connected app, which allows you to plan activities, map distances and routes while also allowing connections with fellow riders.
Price: $2099.00
Available countries
The Genze 200 series e-Bike is available at GenZe retail locations across the U.S or online via GenZe.com website. Customers from outside the US can ship the product while incurring the relevant charges.
Features
Specifications
https://ebikestore.com/shop/norco-vlt-s2/
The Norco VLT S2 is a front suspension e-Bike with solid components alongside the reliable Bosch Performance Line Power systems that offer precise pedal assistance during any riding situation.
Price: $2,699.00
Available countries
This item is available via the various Norco bikes international distributors.
Features
Specifications
http://www.bodoevs.com/bodoev/products_show.asp?product_id=13
Manufactured by Bodo Vehicle Group Limited, the Bodo EV is specially designed for strong power and extraordinary long service to facilitate super amazing rides. The Bodo Vehicle Company is a striking top in electric vehicles brand field in China and across the globe. Their Bodo EV will no doubt provide your riders with high-level riding satisfaction owing to its high-quality design, strength, breaking stability and speed.
Price: $799
Available countries
This item ships from China with buyers bearing the shipping costs and other variables prior to delivery.
Features
Specifications
#android app #autorent #entrepreneurship #ios app #minimum viable product (mvp) #mobile app development #news #app like bird #app like bounce #app like lime #autorent #best electric bikes 2020 #best electric bikes for rental business #best electric kick scooters 2020 #best electric kickscooters for rental business #best electric scooters 2020 #best electric scooters for rental business #bird scooter business model #bird scooter rental #bird scooter rental cost #bird scooter rental price #clone app like bird #clone app like bounce #clone app like lime #electric rental scooters #electric scooter company #electric scooter rental business #how do you start a moped #how to start a moped #how to start a scooter rental business #how to start an electric company #how to start electric scooterrental business #lime scooter business model #scooter franchise #scooter rental business #scooter rental business for sale #scooter rental business insurance #scooters franchise cost #white label app like bird #white label app like bounce #white label app like lime
1595059664
With more of us using smartphones, the popularity of mobile applications has exploded. In the digital era, the number of people looking for products and services online is growing rapidly. Smartphone owners look for mobile applications that give them quick access to companies’ products and services. As a result, mobile apps provide customers with a lot of benefits in just one device.
Likewise, companies use mobile apps to increase customer loyalty and improve their services. Mobile Developers are in high demand as companies use apps not only to create brand awareness but also to gather information. For that reason, mobile apps are used as tools to collect valuable data from customers to help companies improve their offer.
There are many types of mobile applications, each with its own advantages. For example, native apps perform better, while web apps don’t need to be customized for the platform or operating system (OS). Likewise, hybrid apps provide users with comfortable user experience. However, you may be wondering how long it takes to develop an app.
To give you an idea of how long the app development process takes, here’s a short guide.
_Average time spent: two to five weeks _
This is the initial stage and a crucial step in setting the project in the right direction. In this stage, you brainstorm ideas and select the best one. Apart from that, you’ll need to do some research to see if your idea is viable. Remember that coming up with an idea is easy; the hard part is to make it a reality.
All your ideas may seem viable, but you still have to run some tests to keep it as real as possible. For that reason, when Web Developers are building a web app, they analyze the available ideas to see which one is the best match for the targeted audience.
Targeting the right audience is crucial when you are developing an app. It saves time when shaping the app in the right direction as you have a clear set of objectives. Likewise, analyzing how the app affects the market is essential. During the research process, App Developers must gather information about potential competitors and threats. This helps the app owners develop strategies to tackle difficulties that come up after the launch.
The research process can take several weeks, but it determines how successful your app can be. For that reason, you must take your time to know all the weaknesses and strengths of the competitors, possible app strategies, and targeted audience.
The outcomes of this stage are app prototypes and the minimum feasible product.
#android app #frontend #ios app #minimum viable product (mvp) #mobile app development #web development #android app development #app development #app development for ios and android #app development process #ios and android app development #ios app development #stages in app development