1670310316
In this Angular article, we will learn about the new Angular Visual Editor Component. The Angular Image Editor is a graphical user interface for editing images. It provides built-in support to rotate, flip, zoom, and crop images. Users can insert annotations including text, freehand drawings, and shapes such as rectangles, ellipses, and lines. Also, the control supports keyboard interactions, events, and an optimized UI for touch gestures.
The following GIF image shows some of its features in action.
Angular Image Editor Component
The Angular Image Editor is a great fit for the following applications:
The Image Editor component can open base64, image data, or hosted and online URL images using the open method. You can also open an image by clicking the Open button in the toolbar. The supported file types are PNG, JPEG, SVG, and base64.
Users can also edit images and save them as ImageData using the getImageData method. To save images in PNG, JPEG, and SVG formats, users can use the export method, which accepts file type and file name as parameters.
In the following code example, the open method is used to open a hosted image.
<div id="wrapperDiv" style="width:550px; height:350px;">
<ejs-imageeditor (created)="created()" #ImageEditor [toolbar]='toolbarItems'></ejs-imageeditor>
</div>
export class AppComponent {
@ViewChild('ImageEditor')
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [];
public created = (): void => {
this.ImageEditorInstance.open("http://localhost:6969/image/bridge.png");
}
}
The output of this code example is shown in the following image.
Viewing an Image Using Angular Image Editor
Note: To view hosted images, you need to enable the Directory Browsing option in IIS, which creates a web.config file inside the hosted folder. Add the following code in the web.config file to resolve the CORS issue.
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<directoryBrowse enabled="true" />
<httpProtocol>
<customHeaders>
<clear />
<add name="Access-Control-Allow-Origin" value="*" />
</customHeaders>
</httpProtocol>
</system.webServer>
</configuration>
The Image Editor component supports multiple selection options including square, circle, and custom shapes. It can also handle various aspect ratios. You can crop an image by dragging and resizing the selection region. You can perform selection by either using the toolbar or the select method.
In the select method, we have to specify the selection type (custom, square, or circle) and aspect ratios (3:2, 4:3, 5:4, 7:5, or 16:9).
In the toolbar, we can perform selection by just clicking the Crop dropdown button and picking a selection shape (custom, square, or circle) and aspect ratio.
The Angular Image Editor can crop any image based on a user-defined selection. The cropping can be made by either using the toolbar or the crop method.
In the toolbar, we can perform cropping by clicking the OK button that is enabled after the user selects a part of the image.
In the following code example, we have used the select and crop methods to perform circular selection and crop the image.
<div>
<div style="padding-bottom: 10px;">
<button class="e-btn" (click)="select()">Select</button>
<button class="e-btn" (click)="crop()">Crop</button>
</div>
<div id="wrapperDiv" style="width:550px; height:350px;">
<ejs-imageeditor (created)="created()" #ImageEditor [toolbar]='toolbarItems'></ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild('ImageEditor')
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [];
public created = (): void => {
this.ImageEditorInstance.open("http://localhost:6969/image/bridge.png");
}
public select = (): void => {
this.ImageEditorInstance.select('circle');
}
public crop = (): void => {
this.ImageEditorInstance.crop();
}
}Cropping an Image Using Angular Image Editor
The Angular Image Editor component has rotate and flip transformation support. The rotation transformation allows users to rotate an image clockwise or counterclockwise 90, 180, 270, or 360 degrees. The flip transformation supports horizontal and vertical orientations. We can perform both transformations by either using the toolbar or the rotate and flip methods.
In the toolbar, we can perform rotate and flip actions by clicking the Transform dropdown button and selecting one of the Rotate Left, Rotate Right, Horizontal Flip, or Vertical Flip options.
In the following code example, the rotate and flip methods are used to perform rotation and flip actions.
<div>
<div style="padding-bottom: 10px;">
<button class="e-btn" (click)="rotate()">Rotate</button>
<button class="e-btn" (click)="flip()">Flip</button>
</div>
<div id="wrapperDiv" style="width:550px; height:350px;">
<ejs-imageeditor (created)="created()" #ImageEditor [toolbar]='toolbarItems'></ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild('ImageEditor')
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [];
public created = (): void => {
this.ImageEditorInstance.open("http://localhost:6969/image/bridge.png");
}
public rotate = (): void => {
this.ImageEditorInstance.rotate(90);
}
public flip = (): void => {
this.ImageEditorInstance.flip("Vertical");
}
}Rotate and Flip Options in Angular Image Editor
The Angular Image Editor component supports multiple types of annotations, including text, freehand drawings, and shapes such as rectangles, ellipses, and lines.
You can insert a text annotation and customize it by changing its color, font family, font size, and font styles, such as bold and italic. You can add a text annotation by either using the toolbar or the drawText method.
In the drawText method, you can insert a text annotation by specifying the text, font family, font size, and font styles.
In the toolbar, we can insert a text annotation by just clicking the Annotation dropdown button and picking the Add Text option. Once the text is inserted, the contextual toolbar will be enabled to customize the annotation’s color, font family, font size, and font styles, such as bold and italic.
You can insert and customize the shape annotations such as rectangles, ellipses, and lines by changing their stroke color, fill color, and stroke width. Shape annotations can be made by either using the toolbar or the drawRectangle, drawEllipse, and drawLine methods.
In the toolbar, we can insert the shape annotations by clicking the Annotation dropdown button and picking either the Rectangle, Ellipse, or Line options. Once the shape is inserted, the contextual toolbar will be enabled to customize the annotation’s stroke color, fill color, and stroke width.
In the following code example, the drawText method is used to insert text, and the drawRectangle, drawEllipse, and drawLine methods are used to insert the respective annotation shapes.
<div>
<div style="padding-bottom: 10px;">
<button class="e-btn" (click)="text()">Add Text</button>
<button class="e-btn" (click)="rectangle()">Rectangle</button>
<button class="e-btn" (click)="ellipse()">Ellipse</button>
<button class="e-btn" (click)="line()">Line</button>
</div>
<div id="wrapperDiv" style="width:550px; height:350px;">
<ejs-imageeditor (created)="created()" #ImageEditor [toolbar]='toolbarItems'></ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild('ImageEditor')
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [];
public created = (): void => {
this.ImageEditorInstance.open("http://localhost:6969/image/bridge.png");
}
public text = (): void => {
this.ImageEditorInstance.drawText(50, 50, 'Syncfusion');
}
public rectangle = (): void => {
this.ImageEditorInstance.drawRectangle(50, 300);
}
public ellipse = (): void => {
this.ImageEditorInstance.drawEllipse(1000, 300);
}
public line = (): void => {
this.ImageEditorInstance.drawLine(1000, 150);
}
}Text and Shapes Annotation Feature in Angular Image Editor
You can easily insert a freehand drawing annotation and customize it by changing its stroke color and stroke width. The freehand drawing annotation can be made by either using the toolbar or the freehandDraw method.
In the toolbar, you can insert the freehand draw annotation by clicking the Annotation dropdown button and picking the Freehand Draw option. Once the freehand draw option is enabled, the contextual toolbar will be enabled to customize the stroke color and width.
In the following code example, the freehandDraw method is used to toggle the freehand drawings.
<div>
<div style=”padding-bottom: 10px;”>
<button class=”e-btn” (click)=”freehanddraw()”>Freehand Draw</button>
</div>
<div id=”wrapperDiv” style=”width:550px; height:350px;”>
<ejs-imageeditor (created)=”created()” #ImageEditor [toolbar]=’toolbarItems’></ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild(‘ImageEditor’)
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [];
public created = (): void => {
this.ImageEditorInstance.open(“http://localhost:6969/image/bridge.png”);
}
public freehanddraw = (): void => {
this.ImageEditorInstance.freeHandDraw(true);
}
}Freehand Drawing Annotation Feature in Angular Image Editor
The Angular Image Editor allows users to zoom and pan an image. You can perform zooming and panning by either using the toolbar or the zoom and pan method.
In the toolbar, we can perform zooming by clicking the Zoom In and Zoom Out buttons, which enable the Pan option in the toolbar.
In the following code example, the zoomIn, zoomOut, and pan methods are used to perform zooming in, zooming out, and panning the image, respectively.
<div>
<div style="padding-bottom: 10px;">
<button class="e-btn" (click)="zoomIn()">Zoom In</button>
<button class="e-btn" (click)="zoomOut()">Zoom Out</button>
<button class="e-btn" (click)="pan()">Pan</button>
</div>
<div id="wrapperDiv" style="width:550px; height:350px;">
<ejs-imageeditor (created)="created()" #ImageEditor [toolbar]='toolbarItems'></ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild('ImageEditor')
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [];
public created = (): void => {
this.ImageEditorInstance.open("http://localhost:6969/image/bridge.png");
}
public zoomIn = (): void => {
this.ImageEditorInstance.zoom(0.1);
}
public zoomOut = (): void => {
this.ImageEditorInstance.zoom(-0.1);
}
public pan = (): void => {
this.ImageEditorInstance.pan(true);
}
}Zooming and Panning Features in Angular Image Editor
You can customize the built-in toolbar using the toolbar property. A contextual toolbar is enabled while inserting annotations. You can also customize the toolbar by using the toolbarUpdating event.
In the following code example, the annotate option is only enabled with text, rectangle, and ellipse options using the toolbar property, and the contextual toolbar for the rectangle annotation is rendered with only stroke color by excluding fill color and stroke width using the toolbarUpdating event.
<div>
<div id=”wrapperDiv” style=”width:550px; height:350px;”>
<ejs-imageeditor (toolbarUpdating)=”toolbarUpdating($event)” (created)=”created()” #ImageEditor [toolbar]=’toolbarItems’></ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild(‘ImageEditor’)
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = [‘Annotate’, ‘Text’, ‘Rectangle’, ‘Ellipse’];
public created = (): void => {
this.ImageEditorInstance.open(“http://localhost:6969/image/bridge.png”);
}
public toolbarUpdating = (args: ToolbarEventArgs): void => {
if (args.toolbarType === ‘shapes’) {
args.toolbarItems = [‘strokeColor’];
}
}
}Customizing the Toolbar in Angular Image Editor
Also, users can replace the toolbar of the Image Editor with the user-specific UI using the toolbarTemplate property.
Refer to the following code example.
<div>
<div id="wrapperDiv" style="width: 550px; height: 350px;">
<ejs-imageeditor (created)="created()" #ImageEditor>
<ng-template #toolbarTemplate let-data>
<div style="padding: 10px; border-bottom: 1px solid darkgray;">
<button class="e-btn" (click)="text()">Add Text</button>
<button class="e-btn" (click)="rectangle()">Rectangle</button>
<button class="e-btn" (click)="line()">Line</button>
</div>
</ng-template>
</ejs-imageeditor>
</div>
</div>
export class AppComponent {
@ViewChild('ImageEditor')
public ImageEditorInstance!: ImageEditorComponent;
public toolbarItems: string[] = ['Annotate', 'Text', 'Rectangle', 'Ellipse'];
public created = (): void => {
this.ImageEditorInstance.open("http://localhost:6969/image/bridge.png");
}
public text = (): void => {
this.ImageEditorInstance.drawText(50, 50, 'Syncfusion');
}
public rectangle = (): void => {
this.ImageEditorInstance.drawRectangle(50, 300);
}
public line = (): void => {
this.ImageEditorInstance.drawLine(1000, 150);
}
}Customizing the Toolbar with the Toolbar Template Option in Angular Image Editor
By default, the Angular Image Editor adapts to all mobile devices based on the screen size. It is a touch-friendly component, so users can use their finger, a pen, or a mouse device on desktop and mobile devices to edit the image.
Adaptive and Touch-Friendly UI in Angular Image Editor
We have a set of resources for you, including our Angular Image Editor live demos and documentation that explains our customization features.
Thanks for reading! We hope you enjoyed this quick introduction to the design and features of our new Angular Image Editor component. If you would like to give it a try, please download the latest available version of Essential Studio, 2022 Volume 3 . Experience wonderful image editing with this component and provide your valuable feedback in the comments section below.
Original article sourced at: https://www.syncfusion.com
1653123600
This repository is a fork of SimpleMDE, made by Sparksuite. Go to the dedicated section for more information.
A drop-in JavaScript text area replacement for writing beautiful and understandable Markdown. EasyMDE allows users who may be less experienced with Markdown to use familiar toolbar buttons and shortcuts.
In addition, the syntax is rendered while editing to clearly show the expected result. Headings are larger, emphasized words are italicized, links are underlined, etc.
EasyMDE also features both built-in auto saving and spell checking. The editor is entirely customizable, from theming to toolbar buttons and javascript hooks.
Via npm:
npm install easymde
Via the UNPKG CDN:
<link rel="stylesheet" href="https://unpkg.com/easymde/dist/easymde.min.css">
<script src="https://unpkg.com/easymde/dist/easymde.min.js"></script>
Or jsDelivr:
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/easymde/dist/easymde.min.css">
<script src="https://cdn.jsdelivr.net/npm/easymde/dist/easymde.min.js"></script>
After installing and/or importing the module, you can load EasyMDE onto the first textarea
element on the web page:
<textarea></textarea>
<script>
const easyMDE = new EasyMDE();
</script>
Alternatively you can select a specific textarea
, via JavaScript:
<textarea id="my-text-area"></textarea>
<script>
const easyMDE = new EasyMDE({element: document.getElementById('my-text-area')});
</script>
Use easyMDE.value()
to get the content of the editor:
<script>
easyMDE.value();
</script>
Use easyMDE.value(val)
to set the content of the editor:
<script>
easyMDE.value('New input for **EasyMDE**');
</script>
true
, force downloads Font Awesome (used for icons). If set to false
, prevents downloading. Defaults to undefined
, which will intelligently check whether Font Awesome has already been included, then download accordingly.true
, focuses the editor automatically. Defaults to false
.true
, saves the text automatically. Defaults to false
.10000
(10 seconds).autosave.delay
or 10000
(10 seconds).locale: en-US, format: hour:minute
.{ delay: 300 }
, it will check every 300 ms if the editor is visible and if positive, call CodeMirror's refresh()
.**
or __
. Defaults to **
.```
or ~~~
. Defaults to ```
.*
or _
. Defaults to *
.*
, -
or +
. Defaults to *
.textarea
element to use. Defaults to the first textarea
element on the page.true
, force text changes made in EasyMDE to be immediately stored in original text area. Defaults to false
.false
, indent using spaces instead of tabs. Defaults to true
.false
by default, preview for images will appear only for images on separate lines.
as argument and returns a string that serves as the src
attribute of the <img>
tag in the preview. Enables dynamic previewing of images in the frontend without having to upload them to a server, allows copy-pasting of images to the editor with preview.["[", "](http://)"]
.true
, enables line numbers in the editor.false
, disable line wrapping. Defaults to true
."500px"
. Defaults to "300px"
.minHeight
option will be ignored. Should be a string containing a valid CSS value like "500px"
. Defaults to undefined
.true
when the editor is currently going into full screen mode, or false
.true
, will render headers without a space after the #
. Defaults to false
.false
, will not process GFM strikethrough syntax. Defaults to true
.true
, let underscores be a delimiter for separating words. Defaults to false
.false
, will replace CSS classes returned by the default Markdown mode. Otherwise the classes returned by the custom mode will be combined with the classes returned by the default mode. Defaults to true
."editor-preview"
.true
, a JS alert window appears asking for the link or image URL. Defaults to false
.URL of the image:
.URL for the link:
.true
, enables the image upload functionality, which can be triggered by drag and drop, copy-paste and through the browse-file window (opened when the user click on the upload-image icon). Defaults to false
.1024 * 1024 * 2
(2 MB).image/png, image/jpeg
.imageMaxSize
, imageAccept
, imageUploadEndpoint
and imageCSRFToken
ineffective.onSuccess
and onError
callback functions as parameters. onSuccess(imageUrl: string)
and onError(errorMessage: string)
{"data": {"filePath": "<filePath>"}}
where filePath is the path of the image (absolute if imagePathAbsolute
is set to true, relative if otherwise);{"error": "<errorCode>"}
, where errorCode can be noFileGiven
(HTTP 400 Bad Request), typeNotAllowed
(HTTP 415 Unsupported Media Type), fileTooLarge
(HTTP 413 Payload Too Large) or importError
(see errorMessages below). If errorCode is not one of the errorMessages, it is alerted unchanged to the user. This allows for server-side error messages. No default value.true
, will treat imageUrl
from imageUploadFunction
and filePath returned from imageUploadEndpoint
as an absolute rather than relative path, i.e. not prepend window.location.origin
to it.imageCSRFToken
has value, defaults to csrfmiddlewaretoken
.true
, passing CSRF token via header. Defaults to false
, which pass CSRF through request body.#image_name#
, #image_size#
and #image_max_size#
will replaced by their respective values, that can be used for customization or internationalization:uploadImage
is set to true
. Defaults to Attach files by drag and dropping or pasting from clipboard.
.Drop image to upload it.
.Uploading images #images_names#
.Uploading #file_name#: #progress#%
.Uploaded #image_name#
.B, KB, MB
(example: 218 KB
). You can use B,KB,MB
instead if you prefer without whitespaces (218KB
).errorCallback
option, where #image_name#
, #image_size#
and #image_max_size#
will replaced by their respective values, that can be used for customization or internationalization:You must select a file.
.imageAccept
list, or the server returned this error code. Defaults to This image type is not allowed.
.imageMaxSize
, or if the server returned this error code. Defaults to Image #image_name# is too big (#image_size#).\nMaximum file size is #image_max_size#.
.Something went wrong when uploading the image #image_name#.
.(errorMessage) => alert(errorMessage)
.true
, will highlight using highlight.js. Defaults to false
. To use this feature you must include highlight.js on your page or pass in using the hljs
option. For example, include the script and the CSS files like:<script src="https://cdn.jsdelivr.net/highlight.js/latest/highlight.min.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/highlight.js/latest/styles/github.min.css">
window.hljs
), you can provide an instance here. Defaults to undefined
.renderingConfig
options will take precedence.false
, disable parsing GitHub Flavored Markdown (GFM) single line breaks. Defaults to true
.false
, disable the spell checker. Defaults to true
. Optionally pass a CodeMirrorSpellChecker-compliant function.textarea
or contenteditable
. Defaults to textarea
for desktop and contenteditable
for mobile. contenteditable
option is necessary to enable nativeSpellcheck.false
, disable native spell checker. Defaults to true
.false
, allows side-by-side editing without going into fullscreen. Defaults to true
.false
, hide the status bar. Defaults to the array of built-in status bar items.false
, remove the CodeMirror-selectedtext
class from selected lines. Defaults to true
.false
, disable syncing scroll in side by side mode. Defaults to true
.2
.easymde
.false
, hide the toolbar. Defaults to the array of icons.false
, disable toolbar button tips. Defaults to true
.rtl
or ltr
. Changes text direction to support right-to-left languages. Defaults to ltr
.Most options demonstrate the non-default behavior:
const editor = new EasyMDE({
autofocus: true,
autosave: {
enabled: true,
uniqueId: "MyUniqueID",
delay: 1000,
submit_delay: 5000,
timeFormat: {
locale: 'en-US',
format: {
year: 'numeric',
month: 'long',
day: '2-digit',
hour: '2-digit',
minute: '2-digit',
},
},
text: "Autosaved: "
},
blockStyles: {
bold: "__",
italic: "_",
},
unorderedListStyle: "-",
element: document.getElementById("MyID"),
forceSync: true,
hideIcons: ["guide", "heading"],
indentWithTabs: false,
initialValue: "Hello world!",
insertTexts: {
horizontalRule: ["", "\n\n-----\n\n"],
image: [""],
link: ["[", "](https://)"],
table: ["", "\n\n| Column 1 | Column 2 | Column 3 |\n| -------- | -------- | -------- |\n| Text | Text | Text |\n\n"],
},
lineWrapping: false,
minHeight: "500px",
parsingConfig: {
allowAtxHeaderWithoutSpace: true,
strikethrough: false,
underscoresBreakWords: true,
},
placeholder: "Type here...",
previewClass: "my-custom-styling",
previewClass: ["my-custom-styling", "more-custom-styling"],
previewRender: (plainText) => customMarkdownParser(plainText), // Returns HTML from a custom parser
previewRender: (plainText, preview) => { // Async method
setTimeout(() => {
preview.innerHTML = customMarkdownParser(plainText);
}, 250);
return "Loading...";
},
promptURLs: true,
promptTexts: {
image: "Custom prompt for URL:",
link: "Custom prompt for URL:",
},
renderingConfig: {
singleLineBreaks: false,
codeSyntaxHighlighting: true,
sanitizerFunction: (renderedHTML) => {
// Using DOMPurify and only allowing <b> tags
return DOMPurify.sanitize(renderedHTML, {ALLOWED_TAGS: ['b']})
},
},
shortcuts: {
drawTable: "Cmd-Alt-T"
},
showIcons: ["code", "table"],
spellChecker: false,
status: false,
status: ["autosave", "lines", "words", "cursor"], // Optional usage
status: ["autosave", "lines", "words", "cursor", {
className: "keystrokes",
defaultValue: (el) => {
el.setAttribute('data-keystrokes', 0);
},
onUpdate: (el) => {
const keystrokes = Number(el.getAttribute('data-keystrokes')) + 1;
el.innerHTML = `${keystrokes} Keystrokes`;
el.setAttribute('data-keystrokes', keystrokes);
},
}], // Another optional usage, with a custom status bar item that counts keystrokes
styleSelectedText: false,
sideBySideFullscreen: false,
syncSideBySidePreviewScroll: false,
tabSize: 4,
toolbar: false,
toolbarTips: false,
});
Below are the built-in toolbar icons (only some of which are enabled by default), which can be reorganized however you like. "Name" is the name of the icon, referenced in the JavaScript. "Action" is either a function or a URL to open. "Class" is the class given to the icon. "Tooltip" is the small tooltip that appears via the title=""
attribute. Note that shortcut hints are added automatically and reflect the specified action if it has a key bind assigned to it (i.e. with the value of action
set to bold
and that of tooltip
set to Bold
, the final text the user will see would be "Bold (Ctrl-B)").
Additionally, you can add a separator between any icons by adding "|"
to the toolbar array.
Name | Action | Tooltip Class |
---|---|---|
bold | toggleBold | Bold fa fa-bold |
italic | toggleItalic | Italic fa fa-italic |
strikethrough | toggleStrikethrough | Strikethrough fa fa-strikethrough |
heading | toggleHeadingSmaller | Heading fa fa-header |
heading-smaller | toggleHeadingSmaller | Smaller Heading fa fa-header |
heading-bigger | toggleHeadingBigger | Bigger Heading fa fa-lg fa-header |
heading-1 | toggleHeading1 | Big Heading fa fa-header header-1 |
heading-2 | toggleHeading2 | Medium Heading fa fa-header header-2 |
heading-3 | toggleHeading3 | Small Heading fa fa-header header-3 |
code | toggleCodeBlock | Code fa fa-code |
quote | toggleBlockquote | Quote fa fa-quote-left |
unordered-list | toggleUnorderedList | Generic List fa fa-list-ul |
ordered-list | toggleOrderedList | Numbered List fa fa-list-ol |
clean-block | cleanBlock | Clean block fa fa-eraser |
link | drawLink | Create Link fa fa-link |
image | drawImage | Insert Image fa fa-picture-o |
table | drawTable | Insert Table fa fa-table |
horizontal-rule | drawHorizontalRule | Insert Horizontal Line fa fa-minus |
preview | togglePreview | Toggle Preview fa fa-eye no-disable |
side-by-side | toggleSideBySide | Toggle Side by Side fa fa-columns no-disable no-mobile |
fullscreen | toggleFullScreen | Toggle Fullscreen fa fa-arrows-alt no-disable no-mobile |
guide | This link | Markdown Guide fa fa-question-circle |
undo | undo | Undo fa fa-undo |
redo | redo | Redo fa fa-redo |
Customize the toolbar using the toolbar
option.
Only the order of existing buttons:
const easyMDE = new EasyMDE({
toolbar: ["bold", "italic", "heading", "|", "quote"]
});
All information and/or add your own icons
const easyMDE = new EasyMDE({
toolbar: [
{
name: "bold",
action: EasyMDE.toggleBold,
className: "fa fa-bold",
title: "Bold",
},
"italics", // shortcut to pre-made button
{
name: "custom",
action: (editor) => {
// Add your own code
},
className: "fa fa-star",
title: "Custom Button",
attributes: { // for custom attributes
id: "custom-id",
"data-value": "custom value" // HTML5 data-* attributes need to be enclosed in quotation marks ("") because of the dash (-) in its name.
}
},
"|" // Separator
// [, ...]
]
});
Put some buttons on dropdown menu
const easyMDE = new EasyMDE({
toolbar: [{
name: "heading",
action: EasyMDE.toggleHeadingSmaller,
className: "fa fa-header",
title: "Headers",
},
"|",
{
name: "others",
className: "fa fa-blind",
title: "others buttons",
children: [
{
name: "image",
action: EasyMDE.drawImage,
className: "fa fa-picture-o",
title: "Image",
},
{
name: "quote",
action: EasyMDE.toggleBlockquote,
className: "fa fa-percent",
title: "Quote",
},
{
name: "link",
action: EasyMDE.drawLink,
className: "fa fa-link",
title: "Link",
}
]
},
// [, ...]
]
});
EasyMDE comes with an array of predefined keyboard shortcuts, but they can be altered with a configuration option. The list of default ones is as follows:
Shortcut (Windows / Linux) | Shortcut (macOS) | Action |
---|---|---|
Ctrl-' | Cmd-' | "toggleBlockquote" |
Ctrl-B | Cmd-B | "toggleBold" |
Ctrl-E | Cmd-E | "cleanBlock" |
Ctrl-H | Cmd-H | "toggleHeadingSmaller" |
Ctrl-I | Cmd-I | "toggleItalic" |
Ctrl-K | Cmd-K | "drawLink" |
Ctrl-L | Cmd-L | "toggleUnorderedList" |
Ctrl-P | Cmd-P | "togglePreview" |
Ctrl-Alt-C | Cmd-Alt-C | "toggleCodeBlock" |
Ctrl-Alt-I | Cmd-Alt-I | "drawImage" |
Ctrl-Alt-L | Cmd-Alt-L | "toggleOrderedList" |
Shift-Ctrl-H | Shift-Cmd-H | "toggleHeadingBigger" |
F9 | F9 | "toggleSideBySide" |
F11 | F11 | "toggleFullScreen" |
Here is how you can change a few, while leaving others untouched:
const editor = new EasyMDE({
shortcuts: {
"toggleOrderedList": "Ctrl-Alt-K", // alter the shortcut for toggleOrderedList
"toggleCodeBlock": null, // unbind Ctrl-Alt-C
"drawTable": "Cmd-Alt-T", // bind Cmd-Alt-T to drawTable action, which doesn't come with a default shortcut
}
});
Shortcuts are automatically converted between platforms. If you define a shortcut as "Cmd-B", on PC that shortcut will be changed to "Ctrl-B". Conversely, a shortcut defined as "Ctrl-B" will become "Cmd-B" for Mac users.
The list of actions that can be bound is the same as the list of built-in actions available for toolbar buttons.
You can catch the following list of events: https://codemirror.net/doc/manual.html#events
const easyMDE = new EasyMDE();
easyMDE.codemirror.on("change", () => {
console.log(easyMDE.value());
});
You can revert to the initial text area by calling the toTextArea
method. Note that this clears up the autosave (if enabled) associated with it. The text area will retain any text from the destroyed EasyMDE instance.
const easyMDE = new EasyMDE();
// ...
easyMDE.toTextArea();
easyMDE = null;
If you need to remove registered event listeners (when the editor is not needed anymore), call easyMDE.cleanup()
.
The following self-explanatory methods may be of use while developing with EasyMDE.
const easyMDE = new EasyMDE();
easyMDE.isPreviewActive(); // returns boolean
easyMDE.isSideBySideActive(); // returns boolean
easyMDE.isFullscreenActive(); // returns boolean
easyMDE.clearAutosavedValue(); // no returned value
EasyMDE is a continuation of SimpleMDE.
SimpleMDE began as an improvement of lepture's Editor project, but has now taken on an identity of its own. It is bundled with CodeMirror and depends on Font Awesome.
CodeMirror is the backbone of the project and parses much of the Markdown syntax as it's being written. This allows us to add styles to the Markdown that's being written. Additionally, a toolbar and status bar have been added to the top and bottom, respectively. Previews are rendered by Marked using GitHub Flavored Markdown (GFM).
I originally made this fork to implement FontAwesome 5 compatibility into SimpleMDE. When that was done I submitted a pull request, which has not been accepted yet. This, and the project being inactive since May 2017, triggered me to make more changes and try to put new life into the project.
Changes include:
https://
by defaultMy intention is to continue development on this project, improving it and keeping it alive.
You may want to edit this library to adapt its behavior to your needs. This can be done in some quick steps:
gulp
command, which will generate files: dist/easymde.min.css
and dist/easymde.min.js
;Want to contribute to EasyMDE? Thank you! We have a contribution guide just for you!
Author: Ionaru
Source Code: https://github.com/Ionaru/easy-markdown-editor
License: MIT license
1586415180
Instagram is the fastest-growing social network, with 1 billion monthly users. It also has the highest engagement rate. To gain followers on Instagram, you’d have to upload engaging content, follow users, like posts, comment on user posts and a whole lot. This can be time-consuming and daunting. But there is hope, you can automate all of these tasks. In this course, we’re going to build an Instagram bot using Python to automate tasks on Instagram.
What you’ll learn:
I got around 500 real followers in 4 days!
Growing an audience is an expensive and painful task. And if you’d like to build an audience that’s relevant to you, and shares common interests, that’s even more difficult. I always saw Instagram has a great way to promote my photos, but I never had more than 380 followers… Every once in a while, I decide to start posting my photos on Instagram again, and I manage to keep posting regularly for a while, but it never lasts more than a couple of months, and I don’t have many followers to keep me motivated and engaged.
The objective of this project is to build a bigger audience and as a plus, maybe drive some traffic to my website where I sell my photos!
A year ago, on my last Instagram run, I got one of those apps that lets you track who unfollowed you. I was curious because in a few occasions my number of followers dropped for no apparent reason. After some research, I realized how some users basically crawl for followers. They comment, like and follow people — looking for a follow back. Only to unfollow them again in the next days.
I can’t say this was a surprise to me, that there were bots in Instagram… It just made me want to build one myself!
And that is why we’re here, so let’s get to it! I came up with a simple bot in Python, while I was messing around with Selenium and trying to figure out some project to use it. Simply put, Selenium is like a browser you can interact with very easily in Python.
Ideally, increasing my Instagram audience will keep me motivated to post regularly. As an extra, I included my website in my profile bio, where people can buy some photos. I think it is a bit of a stretch, but who knows?! My sales are basically zero so far, so it should be easy to track that conversion!
After giving this project some thought, my objective was to increase my audience with relevant people. I want to get followers that actually want to follow me and see more of my work. It’s very easy to come across weird content in the most used hashtags, so I’ve planed this bot to lookup specific hashtags and interact with the photos there. This way, I can be very specific about what kind of interests I want my audience to have. For instance, I really like long exposures, so I can target people who use that hashtag and build an audience around this kind of content. Simple and efficient!
My gallery is a mix of different subjects and styles, from street photography to aerial photography, and some travel photos too. Since it’s my hometown, I also have lots of Lisbon images there. These will be the main topics I’ll use in the hashtags I want to target.
This is not a “get 1000 followers in 24 hours” kind of bot!
I ran the bot a few times in a few different hashtags like “travelblogger”, “travelgram”, “lisbon”, “dronephotography”. In the course of three days I went from 380 to 800 followers. Lots of likes, comments and even some organic growth (people that followed me but were not followed by the bot).
To be clear, I’m not using this bot intensively, as Instagram will stop responding if you run it too fast. It needs to have some sleep commands in between the actions, because after some comments and follows in a short period of time, Instagram stops responding and the bot crashes.
You will be logged into your account, so I’m almost sure that Instagram can know you’re doing something weird if you speed up the process. And most importantly, after doing this for a dozen hashtags, it just gets harder to find new users in the same hashtags. You will need to give it a few days to refresh the user base there.
The most efficient way to get followers in Instagram (apart from posting great photos!) is to follow people. And this bot worked really well for me because I don’t care if I follow 2000 people to get 400 followers.
The bot saves a list with all the users that were followed while it was running, so someday I may actually do something with this list. For instance, I can visit each user profile, evaluate how many followers or posts they have, and decide if I want to keep following them. Or I can get the first picture in their gallery and check its date to see if they are active users.
If we remove the follow action from the bot, I can assure you the growth rate will suffer, as people are less inclined to follow based on a single like or comment.
That’s the debate I had with myself. Even though I truly believe in giving back to the community (I still learn a lot from it too!), there are several paid platforms that do more or less the same as this project. Some are shady, some are used by celebrities. The possibility of starting a similar platform myself, is not off the table yet, so why make the code available?
With that in mind, I decided to add an extra level of difficulty to the process, so I was going to post the code below as an image. I wrote “was”, because meanwhile, I’ve realized the image I’m getting is low quality. Which in turn made me reconsider and post the gist. I’m that nice! The idea behind the image was that if you really wanted to use it, you would have to type the code yourself. And that was my way of limiting the use of this tool to people that actually go through the whole process to create it and maybe even improve it.
I learn a lot more when I type the code myself, instead of copy/pasting scripts. I hope you feel the same way!
The script isn’t as sophisticated as it could be, and I know there’s lots of room to improve it. But hey… it works! I have other projects I want to add to my portfolio, so my time to develop it further is rather limited. Nevertheless, I will try to update this article if I dig deeper.
You’ll need Python (I’m using Python 3.7), Selenium, a browser (in my case I’ll be using Chrome) and… obviously, an Instagram account! Quick overview regarding what the bot will do:
If you reached this paragraph, thank you! You totally deserve to collect your reward! If you find this useful for your profile/brand in any way, do share your experience below :)
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from time import sleep, strftime
from random import randint
import pandas as pd
chromedriver_path = 'C:/Users/User/Downloads/chromedriver_win32/chromedriver.exe' # Change this to your own chromedriver path!
webdriver = webdriver.Chrome(executable_path=chromedriver_path)
sleep(2)
webdriver.get('https://www.instagram.com/accounts/login/?source=auth_switcher')
sleep(3)
username = webdriver.find_element_by_name('username')
username.send_keys('your_username')
password = webdriver.find_element_by_name('password')
password.send_keys('your_password')
button_login = webdriver.find_element_by_css_selector('#react-root > section > main > div > article > div > div:nth-child(1) > div > form > div:nth-child(3) > button')
button_login.click()
sleep(3)
notnow = webdriver.find_element_by_css_selector('body > div:nth-child(13) > div > div > div > div.mt3GC > button.aOOlW.HoLwm')
notnow.click() #comment these last 2 lines out, if you don't get a pop up asking about notifications
In order to use chrome with Selenium, you need to install chromedriver. It’s a fairly simple process and I had no issues with it. Simply install and replace the path above. Once you do that, our variable webdriver will be our Chrome tab.
In cell number 3 you should replace the strings with your own username and the respective password. This is for the bot to type it in the fields displayed. You might have already noticed that when running cell number 2, Chrome opened a new tab. After the password, I’ll define the login button as an object, and in the following line, I click it.
Once you get in inspect mode find the bit of html code that corresponds to what you want to map. Right click it and hover over Copy. You will see that you have some options regarding how you want it to be copied. I used a mix of XPath and css selectors throughout the code (it’s visible in the find_element_ method). It took me a while to get all the references to run smoothly. At points, the css or the xpath directions would fail, but as I adjusted the sleep times, everything started running smoothly.
In this case, I selected “copy selector” and pasted it inside a find_element_ method (cell number 3). It will get you the first result it finds. If it was find_elements_, all elements would be retrieved and you could specify which to get.
Once you get that done, time for the loop. You can add more hashtags in the hashtag_list. If you run it for the first time, you still don’t have a file with the users you followed, so you can simply create prev_user_list as an empty list.
Once you run it once, it will save a csv file with a timestamp with the users it followed. That file will serve as the prev_user_list on your second run. Simple and easy to keep track of what the bot does.
Update with the latest timestamp on the following runs and you get yourself a series of csv backlogs for every run of the bot.
The code is really simple. If you have some basic notions of Python you can probably pick it up quickly. I’m no Python ninja and I was able to build it, so I guess that if you read this far, you are good to go!
hashtag_list = ['travelblog', 'travelblogger', 'traveler']
# prev_user_list = [] - if it's the first time you run it, use this line and comment the two below
prev_user_list = pd.read_csv('20181203-224633_users_followed_list.csv', delimiter=',').iloc[:,1:2] # useful to build a user log
prev_user_list = list(prev_user_list['0'])
new_followed = []
tag = -1
followed = 0
likes = 0
comments = 0
for hashtag in hashtag_list:
tag += 1
webdriver.get('https://www.instagram.com/explore/tags/'+ hashtag_list[tag] + '/')
sleep(5)
first_thumbnail = webdriver.find_element_by_xpath('//*[@id="react-root"]/section/main/article/div[1]/div/div/div[1]/div[1]/a/div')
first_thumbnail.click()
sleep(randint(1,2))
try:
for x in range(1,200):
username = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[1]/h2/a').text
if username not in prev_user_list:
# If we already follow, do not unfollow
if webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[2]/button').text == 'Follow':
webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[2]/button').click()
new_followed.append(username)
followed += 1
# Liking the picture
button_like = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[1]/span[1]/button/span')
button_like.click()
likes += 1
sleep(randint(18,25))
# Comments and tracker
comm_prob = randint(1,10)
print('{}_{}: {}'.format(hashtag, x,comm_prob))
if comm_prob > 7:
comments += 1
webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[1]/span[2]/button/span').click()
comment_box = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[3]/div/form/textarea')
if (comm_prob < 7):
comment_box.send_keys('Really cool!')
sleep(1)
elif (comm_prob > 6) and (comm_prob < 9):
comment_box.send_keys('Nice work :)')
sleep(1)
elif comm_prob == 9:
comment_box.send_keys('Nice gallery!!')
sleep(1)
elif comm_prob == 10:
comment_box.send_keys('So cool! :)')
sleep(1)
# Enter to post comment
comment_box.send_keys(Keys.ENTER)
sleep(randint(22,28))
# Next picture
webdriver.find_element_by_link_text('Next').click()
sleep(randint(25,29))
else:
webdriver.find_element_by_link_text('Next').click()
sleep(randint(20,26))
# some hashtag stops refreshing photos (it may happen sometimes), it continues to the next
except:
continue
for n in range(0,len(new_followed)):
prev_user_list.append(new_followed[n])
updated_user_df = pd.DataFrame(prev_user_list)
updated_user_df.to_csv('{}_users_followed_list.csv'.format(strftime("%Y%m%d-%H%M%S")))
print('Liked {} photos.'.format(likes))
print('Commented {} photos.'.format(comments))
print('Followed {} new people.'.format(followed))
The print statement inside the loop is the way I found to be able to have a tracker that lets me know at what iteration the bot is all the time. It will print the hashtag it’s in, the number of the iteration, and the random number generated for the comment action. I decided not to post comments in every page, so I added three different comments and a random number between 1 and 10 that would define if there was any comment at all, or one of the three. The loop ends, we append the new_followed users to the previous users “database” and saves the new file with the timestamp. You should also get a small report.
And that’s it!
After a few hours without checking the phone, these were the numbers I was getting. I definitely did not expect it to do so well! In about 4 days since I’ve started testing it, I had around 500 new followers, which means I have doubled my audience in a matter of days. I’m curious to see how many of these new followers I will lose in the next days, to see if the growth can be sustainable. I also had a lot more “likes” in my latest photos, but I guess that’s even more expected than the follow backs.
It would be nice to get this bot running in a server, but I have other projects I want to explore, and configuring a server is not one of them! Feel free to leave a comment below, and I’ll do my best to answer your questions.
I’m actually curious to see how long will I keep posting regularly! If you feel like this article was helpful for you, consider thanking me by buying one of my photos.
What do SocialCaptain, Kicksta, Instavast, and many other companies have in common? They all help you reach a greater audience, gain more followers, and get more likes on Instagram while you hardly lift a finger. They do it all through automation, and people pay them a good deal of money for it. But you can do the same thing—for free—using InstaPy!
In this tutorial, you’ll learn how to build a bot with Python and InstaPy, which automates your Instagram activities so that you gain more followers and likes with minimal manual input. Along the way, you’ll learn about browser automation with Selenium and the Page Object Pattern, which together serve as the basis for InstaPy.
In this tutorial, you’ll learn:
You’ll begin by learning how Instagram bots work before you build one.
Table of Contents
Important: Make sure you check Instagram’s Terms of Use before implementing any kind of automation or scraping techniques.
How can an automation script gain you more followers and likes? Before answering this question, think about how an actual person gains more followers and likes.
They do it by being consistently active on the platform. They post often, follow other people, and like and leave comments on other people’s posts. Bots work exactly the same way: They follow, like, and comment on a consistent basis according to the criteria you set.
The better the criteria you set, the better your results will be. You want to make sure you’re targeting the right groups because the people your bot interacts with on Instagram will be more likely to interact with your content.
For example, if you’re selling women’s clothing on Instagram, then you can instruct your bot to like, comment on, and follow mostly women or profiles whose posts include hashtags such as #beauty
, #fashion
, or #clothes
. This makes it more likely that your target audience will notice your profile, follow you back, and start interacting with your posts.
How does it work on the technical side, though? You can’t use the Instagram Developer API since it is fairly limited for this purpose. Enter browser automation. It works in the following way:
https://instagram.com
on the address bar, logs in with your credentials, and starts doing the things you instructed it to do.Next, you’ll build the initial version of your Instagram bot, which will automatically log in to your profile. Note that you won’t use InstaPy just yet.
For this version of your Instagram bot, you’ll be using Selenium, which is the tool that InstaPy uses under the hood.
First, install Selenium. During installation, make sure you also install the Firefox WebDriver since the latest version of InstaPy dropped support for Chrome. This also means that you need the Firefox browser installed on your computer.
Now, create a Python file and write the following code in it:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.get('https://www.instagram.com/')
sleep(5)
browser.close()
Run the code and you’ll see that a Firefox browser opens and directs you to the Instagram login page. Here’s a line-by-line breakdown of the code:
sleep
and webdriver
.browser
.https://www.instagram.com/
on the address bar and hits Enter.This is the Selenium version of Hello, World
. Now you’re ready to add the code that logs in to your Instagram profile. But first, think about how you would log in to your profile manually. You would do the following:
https://www.instagram.com/
.The first step is already done by the code above. Now change it so that it clicks on the login link on the Instagram home page:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
browser.get('https://www.instagram.com/')
login_link = browser.find_element_by_xpath("//a[text()='Log in']")
login_link.click()
sleep(5)
browser.close()
Note the highlighted lines:
<a>
whose text is equal to Log in
. It does this using XPath, but there are a few other methods you could use.<a>
for the login link.Run the script and you’ll see your script in action. It will open the browser, go to Instagram, and click on the login link to go to the login page.
On the login page, there are three important elements:
Next, change the script so that it finds those elements, enters your credentials, and clicks on the login button:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
browser.get('https://www.instagram.com/')
login_link = browser.find_element_by_xpath("//a[text()='Log in']")
login_link.click()
sleep(2)
username_input = browser.find_element_by_css_selector("input[name='username']")
password_input = browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys("<your username>")
password_input.send_keys("<your password>")
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
sleep(5)
browser.close()
Here’s a breakdown of the changes:
<your username>
and <your password>
!Run the script and you’ll be automatically logged in to to your Instagram profile.
You’re off to a good start with your Instagram bot. If you were to continue writing this script, then the rest would look very similar. You would find the posts that you like by scrolling down your feed, find the like button by CSS, click on it, find the comments section, leave a comment, and continue.
The good news is that all of those steps can be handled by InstaPy. But before you jump into using Instapy, there is one other thing that you should know about to better understand how InstaPy works: the Page Object Pattern.
Now that you’ve written the login code, how would you write a test for it? It would look something like the following:
def test_login_page(browser):
browser.get('https://www.instagram.com/accounts/login/')
username_input = browser.find_element_by_css_selector("input[name='username']")
password_input = browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys("<your username>")
password_input.send_keys("<your password>")
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
errors = browser.find_elements_by_css_selector('#error_message')
assert len(errors) == 0
Can you see what’s wrong with this code? It doesn’t follow the DRY principle. That is, the code is duplicated in both the application and the test code.
Duplicating code is especially bad in this context because Selenium code is dependent on UI elements, and UI elements tend to change. When they do change, you want to update your code in one place. That’s where the Page Object Pattern comes in.
With this pattern, you create page object classes for the most important pages or fragments that provide interfaces that are straightforward to program to and that hide the underlying widgetry in the window. With this in mind, you can rewrite the code above and create a HomePage
class and a LoginPage
class:
from time import sleep
class LoginPage:
def __init__(self, browser):
self.browser = browser
def login(self, username, password):
username_input = self.browser.find_element_by_css_selector("input[name='username']")
password_input = self.browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys(username)
password_input.send_keys(password)
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
sleep(5)
class HomePage:
def __init__(self, browser):
self.browser = browser
self.browser.get('https://www.instagram.com/')
def go_to_login_page(self):
self.browser.find_element_by_xpath("//a[text()='Log in']").click()
sleep(2)
return LoginPage(self.browser)
The code is the same except that the home page and the login page are represented as classes. The classes encapsulate the mechanics required to find and manipulate the data in the UI. That is, there are methods and accessors that allow the software to do anything a human can.
One other thing to note is that when you navigate to another page using a page object, it returns a page object for the new page. Note the returned value of go_to_log_in_page()
. If you had another class called FeedPage
, then login()
of the LoginPage
class would return an instance of that: return FeedPage()
.
Here’s how you can put the Page Object Pattern to use:
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
home_page = HomePage(browser)
login_page = home_page.go_to_login_page()
login_page.login("<your username>", "<your password>")
browser.close()
It looks much better, and the test above can now be rewritten to look like this:
def test_login_page(browser):
home_page = HomePage(browser)
login_page = home_page.go_to_login_page()
login_page.login("<your username>", "<your password>")
errors = browser.find_elements_by_css_selector('#error_message')
assert len(errors) == 0
With these changes, you won’t have to touch your tests if something changes in the UI.
For more information on the Page Object Pattern, refer to the official documentation and to Martin Fowler’s article.
Now that you’re familiar with both Selenium and the Page Object Pattern, you’ll feel right at home with InstaPy. You’ll build a basic bot with it next.
Note: Both Selenium and the Page Object Pattern are widely used for other websites, not just for Instagram.
In this section, you’ll use InstaPy to build an Instagram bot that will automatically like, follow, and comment on different posts. First, you’ll need to install InstaPy:
$ python3 -m pip install instapy
This will install instapy
in your system.
Now you can rewrite the code above with InstaPy so that you can compare the two options. First, create another Python file and put the following code in it:
from instapy import InstaPy
InstaPy(username="<your_username>", password="<your_password>").login()
Replace the username and password with yours, run the script, and voilà! With just one line of code, you achieved the same result.
Even though your results are the same, you can see that the behavior isn’t exactly the same. In addition to simply logging in to your profile, InstaPy does some other things, such as checking your internet connection and the status of the Instagram servers. This can be observed directly on the browser or in the logs:
INFO [2019-12-17 22:03:19] [username] -- Connection Checklist [1/3] (Internet Connection Status)
INFO [2019-12-17 22:03:20] [username] - Internet Connection Status: ok
INFO [2019-12-17 22:03:20] [username] - Current IP is "17.283.46.379" and it's from "Germany/DE"
INFO [2019-12-17 22:03:20] [username] -- Connection Checklist [2/3] (Instagram Server Status)
INFO [2019-12-17 22:03:26] [username] - Instagram WebSite Status: Currently Up
Pretty good for one line of code, isn’t it? Now it’s time to make the script do more interesting things than just logging in.
For the purpose of this example, assume that your profile is all about cars, and that your bot is intended to interact with the profiles of people who are also interested in cars.
First, you can like some posts that are tagged #bmw
or #mercedes
using like_by_tags()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
Here, you gave the method a list of tags to like and the number of posts to like for each given tag. In this case, you instructed it to like ten posts, five for each of the two tags. But take a look at what happens after you run the script:
INFO [2019-12-17 22:15:58] [username] Tag [1/2]
INFO [2019-12-17 22:15:58] [username] --> b'bmw'
INFO [2019-12-17 22:16:07] [username] desired amount: 14 | top posts [disabled]: 9 | possible posts: 43726739
INFO [2019-12-17 22:16:13] [username] Like# [1/14]
INFO [2019-12-17 22:16:13] [username] https://www.instagram.com/p/B6MCcGcC3tU/
INFO [2019-12-17 22:16:15] [username] Image from: b'mattyproduction'
INFO [2019-12-17 22:16:15] [username] Link: b'https://www.instagram.com/p/B6MCcGcC3tU/'
INFO [2019-12-17 22:16:15] [username] Description: b'Mal etwas anderes \xf0\x9f\x91\x80\xe2\x98\xba\xef\xb8\x8f Bald ist das komplette Video auf YouTube zu finden (n\xc3\xa4here Infos werden folgen). Vielen Dank an @patrick_jwki @thehuthlife und @christic_ f\xc3\xbcr das bereitstellen der Autos \xf0\x9f\x94\xa5\xf0\x9f\x98\x8d#carporn#cars#tuning#bagged#bmw#m2#m2competition#focusrs#ford#mk3#e92#m3#panasonic#cinematic#gh5s#dji#roninm#adobe#videography#music#bimmer#fordperformance#night#shooting#'
INFO [2019-12-17 22:16:15] [username] Location: b'K\xc3\xb6ln, Germany'
INFO [2019-12-17 22:16:51] [username] --> Image Liked!
INFO [2019-12-17 22:16:56] [username] --> Not commented
INFO [2019-12-17 22:16:57] [username] --> Not following
INFO [2019-12-17 22:16:58] [username] Like# [2/14]
INFO [2019-12-17 22:16:58] [username] https://www.instagram.com/p/B6MDK1wJ-Kb/
INFO [2019-12-17 22:17:01] [username] Image from: b'davs0'
INFO [2019-12-17 22:17:01] [username] Link: b'https://www.instagram.com/p/B6MDK1wJ-Kb/'
INFO [2019-12-17 22:17:01] [username] Description: b'Someone said cloud? \xf0\x9f\xa4\x94\xf0\x9f\xa4\xad\xf0\x9f\x98\x88 \xe2\x80\xa2\n\xe2\x80\xa2\n\xe2\x80\xa2\n\xe2\x80\xa2\n#bmw #bmwrepost #bmwm4 #bmwm4gts #f82 #bmwmrepost #bmwmsport #bmwmperformance #bmwmpower #bmwm4cs #austinyellow #davs0 #mpower_official #bmw_world_ua #bimmerworld #bmwfans #bmwfamily #bimmers #bmwpost #ultimatedrivingmachine #bmwgang #m3f80 #m5f90 #m4f82 #bmwmafia #bmwcrew #bmwlifestyle'
INFO [2019-12-17 22:17:34] [username] --> Image Liked!
INFO [2019-12-17 22:17:37] [username] --> Not commented
INFO [2019-12-17 22:17:38] [username] --> Not following
By default, InstaPy will like the first nine top posts in addition to your amount
value. In this case, that brings the total number of likes per tag to fourteen (nine top posts plus the five you specified in amount
).
Also note that InstaPy logs every action it takes. As you can see above, it mentions which post it liked as well as its link, description, location, and whether the bot commented on the post or followed the author.
You may have noticed that there are delays after almost every action. That’s by design. It prevents your profile from getting banned on Instagram.
Now, you probably don’t want your bot liking inappropriate posts. To prevent that from happening, you can use set_dont_like()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
With this change, posts that have the words naked
or nsfw
in their descriptions won’t be liked. You can flag any other words that you want your bot to avoid.
Next, you can tell the bot to not only like the posts but also to follow some of the authors of those posts. You can do that with set_do_follow()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
If you run the script now, then the bot will follow fifty percent of the users whose posts it liked. As usual, every action will be logged.
You can also leave some comments on the posts. There are two things that you need to do. First, enable commenting with set_do_comment()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
Next, tell the bot what comments to leave with set_comments()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
session.set_comments(["Nice!", "Sweet!", "Beautiful :heart_eyes:"])
Run the script and the bot will leave one of those three comments on half the posts that it interacts with.
Now that you’re done with the basic settings, it’s a good idea to end the session with end()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
session.set_comments(["Nice!", "Sweet!", "Beautiful :heart_eyes:"])
session.end()
This will close the browser, save the logs, and prepare a report that you can see in the console output.
InstaPy is a sizable project that has a lot of thoroughly documented features. The good news is that if you’re feeling comfortable with the features you used above, then the rest should feel pretty similar. This section will outline some of the more useful features of InstaPy.
You can’t scrape Instagram all day, every day. The service will quickly notice that you’re running a bot and will ban some of its actions. That’s why it’s a good idea to set quotas on some of your bot’s actions. Take the following for example:
session.set_quota_supervisor(enabled=True, peak_comments_daily=240, peak_comments_hourly=21)
The bot will keep commenting until it reaches its hourly and daily limits. It will resume commenting after the quota period has passed.
This feature allows you to run your bot without the GUI of the browser. This is super useful if you want to deploy your bot to a server where you may not have or need the graphical interface. It’s also less CPU intensive, so it improves performance. You can use it like so:
session = InstaPy(username='test', password='test', headless_browser=True)
Note that you set this flag when you initialize the InstaPy
object.
Earlier you saw how to ignore posts that contain inappropriate words in their descriptions. What if the description is good but the image itself is inappropriate? You can integrate your InstaPy bot with ClarifAI, which offers image and video recognition services:
session.set_use_clarifai(enabled=True, api_key='<your_api_key>')
session.clarifai_check_img_for(['nsfw'])
Now your bot won’t like or comment on any image that ClarifAI considers NSFW. You get 5,000 free API-calls per month.
It’s often a waste of time to interact with posts by people who have a lot of followers. In such cases, it’s a good idea to set some relationship bounds so that your bot doesn’t waste your precious computing resources:
session.set_relationship_bounds(enabled=True, max_followers=8500)
With this, your bot won’t interact with posts by users who have more than 8,500 followers.
For many more features and configurations in InstaPy, check out the documentation.
InstaPy allows you to automate your Instagram activities with minimal fuss and effort. It’s a very flexible tool with a lot of useful features.
In this tutorial, you learned:
Read the InstaPy documentation and experiment with your bot a little bit. Soon you’ll start getting new followers and likes with a minimal amount of effort. I gained a few new followers myself while writing this tutorial.
Maybe some of you do not agree it is a good way to grow your IG page by using follow for follow method but after a lot of researching I found the proper way to use this method.
I have done and used this strategy for a while and my page visits also followers started growing.
The majority of people failing because they randomly targeting the followers and as a result, they are not coming back to your page. So, the key is to find people those have same interests with you.
If you have a programming page go and search for IG pages which have big programming community and once you find one, don’t send follow requests to followers of this page. Because some of them are not active even maybe fake accounts. So, in order to gain active followers, go the last post of this page and find people who liked the post.
In order to query data from Instagram I am going to use the very cool, yet unofficial, Instagram API written by Pasha Lev.
**Note:**Before you test it make sure you verified your phone number in your IG account.
The program works pretty well so far but in case of any problems I have to put disclaimer statement here:
Disclaimer: This post published educational purposes only as well as to give general information about Instagram API. I am not responsible for any actions and you are taking your own risk.
Let’s start by installing and then logging in with API.
pip install InstagramApi
from InstagramAPI import InstagramAPI
api = InstagramAPI("username", "password")
api.login()
Once you run the program you will see “Login success!” in your console.
We are going to search for some username (your target page) then get most recent post from this user. Then, get users who liked this post. Unfortunately, I can’t find solution how to paginate users so right now it gets about last 500 user.
users_list = []
def get_likes_list(username):
api.login()
api.searchUsername(username)
result = api.LastJson
username_id = result['user']['pk'] # Get user ID
user_posts = api.getUserFeed(username_id) # Get user feed
result = api.LastJson
media_id = result['items'][0]['id'] # Get most recent post
api.getMediaLikers(media_id) # Get users who liked
users = api.LastJson['users']
for user in users: # Push users to list
users_list.append({'pk':user['pk'], 'username':user['username']})
Once we get the users list, it is time to follow these users.
IMPORTANT NOTE: set time limit as much as you can to avoid automation detection.
from time import sleep
following_users = []
def follow_users(users_list):
api.login()
api.getSelfUsersFollowing() # Get users which you are following
result = api.LastJson
for user in result['users']:
following_users.append(user['pk'])
for user in users_list:
if not user['pk'] in following_users: # if new user is not in your following users
print('Following @' + user['username'])
api.follow(user['pk'])
# after first test set this really long to avoid from suspension
sleep(20)
else:
print('Already following @' + user['username'])
sleep(10)
This function will look users which you are following then it will check if this user follows you as well. If user not following you then you are unfollowing as well.
follower_users = []
def unfollow_users():
api.login()
api.getSelfUserFollowers() # Get your followers
result = api.LastJson
for user in result['users']:
follower_users.append({'pk':user['pk'], 'username':user['username']})
api.getSelfUsersFollowing() # Get users which you are following
result = api.LastJson
for user in result['users']:
following_users.append({'pk':user['pk'],'username':user['username']})
for user in following_users:
if not user['pk'] in follower_users: # if the user not follows you
print('Unfollowing @' + user['username'])
api.unfollow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
Here is the full code of this automation
import pprint
from time import sleep
from InstagramAPI import InstagramAPI
import pandas as pd
users_list = []
following_users = []
follower_users = []
class InstaBot:
def __init__(self):
self.api = InstagramAPI("your_username", "your_password")
def get_likes_list(self,username):
api = self.api
api.login()
api.searchUsername(username) #Gets most recent post from user
result = api.LastJson
username_id = result['user']['pk']
user_posts = api.getUserFeed(username_id)
result = api.LastJson
media_id = result['items'][0]['id']
api.getMediaLikers(media_id)
users = api.LastJson['users']
for user in users:
users_list.append({'pk':user['pk'], 'username':user['username']})
bot.follow_users(users_list)
def follow_users(self,users_list):
api = self.api
api.login()
api.getSelfUsersFollowing()
result = api.LastJson
for user in result['users']:
following_users.append(user['pk'])
for user in users_list:
if not user['pk'] in following_users:
print('Following @' + user['username'])
api.follow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
else:
print('Already following @' + user['username'])
sleep(10)
def unfollow_users(self):
api = self.api
api.login()
api.getSelfUserFollowers()
result = api.LastJson
for user in result['users']:
follower_users.append({'pk':user['pk'], 'username':user['username']})
api.getSelfUsersFollowing()
result = api.LastJson
for user in result['users']:
following_users.append({'pk':user['pk'],'username':user['username']})
for user in following_users:
if not user['pk'] in [user['pk'] for user in follower_users]:
print('Unfollowing @' + user['username'])
api.unfollow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
bot = InstaBot()
# To follow users run the function below
# change the username ('instagram') to your target username
bot.get_likes_list('instagram')
# To unfollow users uncomment and run the function below
# bot.unfollow_users()
it will look like this:
some extra functions to play with API:
def get_my_profile_details():
api.login()
api.getSelfUsernameInfo()
result = api.LastJson
username = result['user']['username']
full_name = result['user']['full_name']
profile_pic_url = result['user']['profile_pic_url']
followers = result['user']['follower_count']
following = result['user']['following_count']
media_count = result['user']['media_count']
df_profile = pd.DataFrame(
{'username':username,
'full name': full_name,
'profile picture URL':profile_pic_url,
'followers':followers,
'following':following,
'media count': media_count,
}, index=[0])
df_profile.to_csv('profile.csv', sep='\t', encoding='utf-8')
def get_my_feed():
image_urls = []
api.login()
api.getSelfUserFeed()
result = api.LastJson
# formatted_json_str = pprint.pformat(result)
# print(formatted_json_str)
if 'items' in result.keys():
for item in result['items'][0:5]:
if 'image_versions2' in item.keys():
image_url = item['image_versions2']['candidates'][1]['url']
image_urls.append(image_url)
df_feed = pd.DataFrame({
'image URL':image_urls
})
df_feed.to_csv('feed.csv', sep='\t', encoding='utf-8')
Let’s build an Instagram bot to gain more followers! — I know, I know. That doesn’t sound very ethical, does it? But it’s all justified for educational purposes.
Coding is a super power — we can all agree. That’s why I’ll leave it up to you to not abuse this power. And I trust you’re here to learn how it works. Otherwise, you’d be on GitHub cloning one of the countless Instagram bots there, right?
You’re convinced? — Alright, now let’s go back to unethical practices.
So here’s the deal, we want to build a bot in Python and Selenium that goes on the hashtags we specify, likes random posts, then follows the posters. It does that enough — we get follow backs. Simple as that.
Here’s a pretty twisted detail though: we want to keep track of the users we follow so the bot can unfollow them after the number of days we specify.
So first things first, I want to use a database to keep track of the username and the date added. You might as well save/load from/to a file, but we want this to be ready for more features in case we felt inspired in the future.
So make sure you create a database (I named mine instabot — but you can name it anything you like) and create a table called followed_users within the database with two fields (username, date_added)
Remember the installation path. You’ll need it.
You’ll also need the following python packages:
Alright, so first thing we’ll be doing is creating settings.json. Simply a .json file that will hold all of our settings so we don’t have to dive into the code every time we want to change something.
settings.json:
{
"db": {
"host": "localhost",
"user": "root",
"pass": "",
"database": "instabot"
},
"instagram": {
"user": "",
"pass": ""
},
"config": {
"days_to_unfollow": 1,
"likes_over": 150,
"check_followers_every": 3600,
"hashtags": []
}
}
As you can see, under “db”, we specify the database information. As I mentioned, I used “instabot”, but feel free to use whatever name you want.
You’ll also need to fill Instagram info under “instagram” so the bot can login into your account.
“config” is for our bot’s settings. Here’s what the fields mean:
days_to_unfollow: number of days before unfollowing users
likes_over: ignore posts if the number of likes is above this number
check_followers_every: number of seconds before checking if it’s time to unfollow any of the users
hashtags: a list of strings with the hashtag names the bot should be active on
Now, we want to take these settings and have them inside our code as constants.
Create Constants.py:
import json
INST_USER= INST_PASS= USER= PASS= HOST= DATABASE= POST_COMMENTS= ''
LIKES_LIMIT= DAYS_TO_UNFOLLOW= CHECK_FOLLOWERS_EVERY= 0
HASHTAGS= []
def init():
global INST_USER, INST_PASS, USER, PASS, HOST, DATABASE, LIKES_LIMIT, DAYS_TO_UNFOLLOW, CHECK_FOLLOWERS_EVERY, HASHTAGS
# read file
data = None
with open('settings.json', 'r') as myfile:
data = myfile.read()
obj = json.loads(data)
INST_USER = obj['instagram']['user']
INST_PASS = obj['instagram']['pass']
USER = obj['db']['user']
HOST = obj['db']['host']
PASS = obj['db']['pass']
DATABASE = obj['db']['database']
LIKES_LIMIT = obj['config']['likes_over']
CHECK_FOLLOWERS_EVERY = obj['config']['check_followers_every']
HASHTAGS = obj['config']['hashtags']
DAYS_TO_UNFOLLOW = obj['config']['days_to_unfollow']
the init() function we created reads the data from settings.json and feeds them into the constants we declared.
Alright, time for some architecture. Our bot will mainly operate from a python script with an init and update methods. Create BotEngine.py:
import Constants
def init(webdriver):
return
def update(webdriver):
return
We’ll be back later to put the logic here, but for now, we need an entry point.
Create our entry point, InstaBot.py:
from selenium import webdriver
import BotEngine
chromedriver_path = 'YOUR CHROMEDRIVER PATH'
webdriver = webdriver.Chrome(executable_path=chromedriver_path)
BotEngine.init(webdriver)
BotEngine.update(webdriver)
webdriver.close()
chromedriver_path = ‘YOUR CHROMEDRIVER PATH’ webdriver = webdriver.Chrome(executable_path=chromedriver_path)
BotEngine.init(webdriver)
BotEngine.update(webdriver)
webdriver.close()
Of course, you’ll need to swap “YOUR CHROMEDRIVER PATH” with your actual ChromeDriver path.
We need to create a helper script that will help us calculate elapsed days since a certain date (so we know if we should unfollow user)
Create TimeHelper.py:
import datetime
def days_since_date(n):
diff = datetime.datetime.now().date() - n
return diff.days
Create DBHandler.py. It’ll contain a class that handles connecting to the Database for us.
import mysql.connector
import Constants
class DBHandler:
def __init__(self):
DBHandler.HOST = Constants.HOST
DBHandler.USER = Constants.USER
DBHandler.DBNAME = Constants.DATABASE
DBHandler.PASSWORD = Constants.PASS
HOST = Constants.HOST
USER = Constants.USER
DBNAME = Constants.DATABASE
PASSWORD = Constants.PASS
@staticmethod
def get_mydb():
if DBHandler.DBNAME == '':
Constants.init()
db = DBHandler()
mydb = db.connect()
return mydb
def connect(self):
mydb = mysql.connector.connect(
host=DBHandler.HOST,
user=DBHandler.USER,
passwd=DBHandler.PASSWORD,
database = DBHandler.DBNAME
)
return mydb
As you can see, we’re using the constants we defined.
The class contains a static method get_mydb() that returns a database connection we can use.
Now, let’s define a DB user script that contains the DB operations we need to perform on the user.
Create DBUsers.py:
import datetime, TimeHelper
from DBHandler import *
import Constants
#delete user by username
def delete_user(username):
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
sql = "DELETE FROM followed_users WHERE username = '{0}'".format(username)
cursor.execute(sql)
mydb.commit()
#add new username
def add_user(username):
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
now = datetime.datetime.now().date()
cursor.execute("INSERT INTO followed_users(username, date_added) VALUES(%s,%s)",(username, now))
mydb.commit()
#check if any user qualifies to be unfollowed
def check_unfollow_list():
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
cursor.execute("SELECT * FROM followed_users")
results = cursor.fetchall()
users_to_unfollow = []
for r in results:
d = TimeHelper.days_since_date(r[1])
if d > Constants.DAYS_TO_UNFOLLOW:
users_to_unfollow.append(r[0])
return users_to_unfollow
#get all followed users
def get_followed_users():
users = []
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
cursor.execute("SELECT * FROM followed_users")
results = cursor.fetchall()
for r in results:
users.append(r[0])
return users
Alright, we’re about to start our bot. We’re creating a script called AccountAgent.py that will contain the agent behavior.
Import some modules, some of which we need for later and write a login function that will make use of our webdriver.
Notice that we have to keep calling the sleep function between actions. If we send too many requests quickly, the Instagram servers will be alarmed and will deny any requests you send.
from time import sleep
import datetime
import DBUsers, Constants
import traceback
import random
def login(webdriver):
#Open the instagram login page
webdriver.get('https://www.instagram.com/accounts/login/?source=auth_switcher')
#sleep for 3 seconds to prevent issues with the server
sleep(3)
#Find username and password fields and set their input using our constants
username = webdriver.find_element_by_name('username')
username.send_keys(Constants.INST_USER)
password = webdriver.find_element_by_name('password')
password.send_keys(Constants.INST_PASS)
#Get the login button
try:
button_login = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[4]/button')
except:
button_login = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[6]/button/div')
#sleep again
sleep(2)
#click login
button_login.click()
sleep(3)
#In case you get a popup after logging in, press not now.
#If not, then just return
try:
notnow = webdriver.find_element_by_css_selector(
'body > div.RnEpo.Yx5HN > div > div > div.mt3GC > button.aOOlW.HoLwm')
notnow.click()
except:
return
Also note how we’re getting elements with their xpath. To do so, right click on the element, click “Inspect”, then right click on the element again inside the inspector, and choose Copy->Copy XPath.
Another important thing to be aware of is that element hierarchy change with the page’s layout when you resize or stretch the window. That’s why we’re checking for two different xpaths for the login button.
Now go back to BotEngine.py, we’re ready to login.
Add more imports that we’ll need later and fill in the init function
import AccountAgent, DBUsers
import Constants
import datetime
def init(webdriver):
Constants.init()
AccountAgent.login(webdriver)
def update(webdriver):
return
If you run our entry script now (InstaBot.py) you’ll see the bot logging in.
Perfect, now let’s add a method that will allow us to follow people to AccountAgent.py:
def follow_people(webdriver):
#all the followed user
prev_user_list = DBUsers.get_followed_users()
#a list to store newly followed users
new_followed = []
#counters
followed = 0
likes = 0
#Iterate theough all the hashtags from the constants
for hashtag in Constants.HASHTAGS:
#Visit the hashtag
webdriver.get('https://www.instagram.com/explore/tags/' + hashtag+ '/')
sleep(5)
#Get the first post thumbnail and click on it
first_thumbnail = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/article/div[1]/div/div/div[1]/div[1]/a/div')
first_thumbnail.click()
sleep(random.randint(1,3))
try:
#iterate over the first 200 posts in the hashtag
for x in range(1,200):
t_start = datetime.datetime.now()
#Get the poster's username
username = webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[1]/h2/a').text
likes_over_limit = False
try:
#get number of likes and compare it to the maximum number of likes to ignore post
likes = int(webdriver.find_element_by_xpath(
'/html/body/div[3]/div[2]/div/article/div[2]/section[2]/div/div/button/span').text)
if likes > Constants.LIKES_LIMIT:
print("likes over {0}".format(Constants.LIKES_LIMIT))
likes_over_limit = True
print("Detected: {0}".format(username))
#If username isn't stored in the database and the likes are in the acceptable range
if username not in prev_user_list and not likes_over_limit:
#Don't press the button if the text doesn't say follow
if webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[2]/button').text == 'Follow':
#Use DBUsers to add the new user to the database
DBUsers.add_user(username)
#Click follow
webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[2]/button').click()
followed += 1
print("Followed: {0}, #{1}".format(username, followed))
new_followed.append(username)
# Liking the picture
button_like = webdriver.find_element_by_xpath(
'/html/body/div[3]/div[2]/div/article/div[2]/section[1]/span[1]/button')
button_like.click()
likes += 1
print("Liked {0}'s post, #{1}".format(username, likes))
sleep(random.randint(5, 18))
# Next picture
webdriver.find_element_by_link_text('Next').click()
sleep(random.randint(20, 30))
except:
traceback.print_exc()
continue
t_end = datetime.datetime.now()
#calculate elapsed time
t_elapsed = t_end - t_start
print("This post took {0} seconds".format(t_elapsed.total_seconds()))
except:
traceback.print_exc()
continue
#add new list to old list
for n in range(0, len(new_followed)):
prev_user_list.append(new_followed[n])
print('Liked {} photos.'.format(likes))
print('Followed {} new people.'.format(followed))
It’s pretty long, but generally here’s the steps of the algorithm:
For every hashtag in the hashtag constant list:
Now we might as well implement the unfollow method, hopefully the engine will be feeding us the usernames to unfollow in a list:
def unfollow_people(webdriver, people):
#if only one user, append in a list
if not isinstance(people, (list,)):
p = people
people = []
people.append(p)
for user in people:
try:
webdriver.get('https://www.instagram.com/' + user + '/')
sleep(5)
unfollow_xpath = '//*[@id="react-root"]/section/main/div/header/section/div[1]/div[1]/span/span[1]/button'
unfollow_confirm_xpath = '/html/body/div[3]/div/div/div[3]/button[1]'
if webdriver.find_element_by_xpath(unfollow_xpath).text == "Following":
sleep(random.randint(4, 15))
webdriver.find_element_by_xpath(unfollow_xpath).click()
sleep(2)
webdriver.find_element_by_xpath(unfollow_confirm_xpath).click()
sleep(4)
DBUsers.delete_user(user)
except Exception:
traceback.print_exc()
continue
Now we can finally go back and finish the bot by implementing the rest of BotEngine.py:
import AccountAgent, DBUsers
import Constants
import datetime
def init(webdriver):
Constants.init()
AccountAgent.login(webdriver)
def update(webdriver):
#Get start of time to calculate elapsed time later
start = datetime.datetime.now()
#Before the loop, check if should unfollow anyone
_check_follow_list(webdriver)
while True:
#Start following operation
AccountAgent.follow_people(webdriver)
#Get the time at the end
end = datetime.datetime.now()
#How much time has passed?
elapsed = end - start
#If greater than our constant to check on
#followers, check on followers
if elapsed.total_seconds() >= Constants.CHECK_FOLLOWERS_EVERY:
#reset the start variable to now
start = datetime.datetime.now()
#check on followers
_check_follow_list(webdriver)
def _check_follow_list(webdriver):
print("Checking for users to unfollow")
#get the unfollow list
users = DBUsers.check_unfollow_list()
#if there's anyone in the list, start unfollowing operation
if len(users) > 0:
AccountAgent.unfollow_people(webdriver, users)
And that’s it — now you have yourself a fully functional Instagram bot built with Python and Selenium. There are many possibilities for you to explore now, so make sure you’re using this newly gained skill to solve real life problems!
You can get the source code for the whole project from this GitHub repository.
Here we build a simple bot using some simple Python which beginner to intermediate coders can follow.
Here’s the code on GitHub
https://github.com/aj-4/ig-followers
Source Code: https://github.com/jg-fisher/instagram-bot
How to Get Instagram Followers/Likes Using Python
In this video I show you how to program your own Instagram Bot using Python and Selenium.
https://www.youtube.com/watch?v=BGU2X5lrz9M
Code Link:
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
import random
import sys
def print_same_line(text):
sys.stdout.write('\r')
sys.stdout.flush()
sys.stdout.write(text)
sys.stdout.flush()
class InstagramBot:
def __init__(self, username, password):
self.username = username
self.password = password
self.driver = webdriver.Chrome()
def closeBrowser(self):
self.driver.close()
def login(self):
driver = self.driver
driver.get("https://www.instagram.com/")
time.sleep(2)
login_button = driver.find_element_by_xpath("//a[@href='/accounts/login/?source=auth_switcher']")
login_button.click()
time.sleep(2)
user_name_elem = driver.find_element_by_xpath("//input[@name='username']")
user_name_elem.clear()
user_name_elem.send_keys(self.username)
passworword_elem = driver.find_element_by_xpath("//input[@name='password']")
passworword_elem.clear()
passworword_elem.send_keys(self.password)
passworword_elem.send_keys(Keys.RETURN)
time.sleep(2)
def like_photo(self, hashtag):
driver = self.driver
driver.get("https://www.instagram.com/explore/tags/" + hashtag + "/")
time.sleep(2)
# gathering photos
pic_hrefs = []
for i in range(1, 7):
try:
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
# get tags
hrefs_in_view = driver.find_elements_by_tag_name('a')
# finding relevant hrefs
hrefs_in_view = [elem.get_attribute('href') for elem in hrefs_in_view
if '.com/p/' in elem.get_attribute('href')]
# building list of unique photos
[pic_hrefs.append(href) for href in hrefs_in_view if href not in pic_hrefs]
# print("Check: pic href length " + str(len(pic_hrefs)))
except Exception:
continue
# Liking photos
unique_photos = len(pic_hrefs)
for pic_href in pic_hrefs:
driver.get(pic_href)
time.sleep(2)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
try:
time.sleep(random.randint(2, 4))
like_button = lambda: driver.find_element_by_xpath('//span[@aria-label="Like"]').click()
like_button().click()
for second in reversed(range(0, random.randint(18, 28))):
print_same_line("#" + hashtag + ': unique photos left: ' + str(unique_photos)
+ " | Sleeping " + str(second))
time.sleep(1)
except Exception as e:
time.sleep(2)
unique_photos -= 1
if __name__ == "__main__":
username = "USERNAME"
password = "PASSWORD"
ig = InstagramBot(username, password)
ig.login()
hashtags = ['amazing', 'beautiful', 'adventure', 'photography', 'nofilter',
'newyork', 'artsy', 'alumni', 'lion', 'best', 'fun', 'happy',
'art', 'funny', 'me', 'followme', 'follow', 'cinematography', 'cinema',
'love', 'instagood', 'instagood', 'followme', 'fashion', 'sun', 'scruffy',
'street', 'canon', 'beauty', 'studio', 'pretty', 'vintage', 'fierce']
while True:
try:
# Choose a random tag from the list of tags
tag = random.choice(hashtags)
ig.like_photo(tag)
except Exception:
ig.closeBrowser()
time.sleep(60)
ig = InstagramBot(username, password)
ig.login()
Build An INSTAGRAM Bot With Python That Gets You Followers
Instagram Automation Using Python
How to Create an Instagram Bot | Get More Followers
Building a simple Instagram Influencer Bot with Python tutorial
#python #chatbot #web-development
1657081614
In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation
Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.
Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.
Sheet: A sheet is a single page composed of cells for organizing data.
Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.
Row: A row is a horizontal line represented by a number (1,2, etc.).
Column: A column is a vertical line represented by a capital letter (A, B, etc.).
Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.
pip install openpyxl
We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook()
which creates a new workbook.
from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method
ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position
#Renaming the sheet
ws.title = "Example"
#save the workbook
wb.save(filename = "example.xlsx")
We load the file using the function load_Workbook()
which takes the filename as an argument. The file must be saved in the same working directory.
#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")
#getting sheet names
wb.sheetnames
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']
#getting a particular sheet
sheet1 = wb["sheet2"]
#getting sheet title
sheet1.title
result = 'sheet2'
#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'
#get a cell from the sheet
sheet1["A1"] <
Cell 'Sheet1'.A1 >
#get the cell value
ws["A1"].value 'Segment'
#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)
d.value
10
#looping through each row and column
for x in range(1, 5):
for y in range(1, 5):
print(x, y, ws.cell(row = x, column = y)
.value)
#getting the highest row number
ws.max_row
701
#getting the highest column number
ws.max_column
19
There are two functions for iterating through rows and columns.
Iter_rows() => returns the rows
Iter_cols() => returns the columns {
min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.
Example:
#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
for cell in row:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C3 >
#iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
for cell in col:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.C3 >
To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.
Example:
for row in ws.values:
for value in row:
print(value)
Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.
#creates a new workbook
wb = openpyxl.Workbook()
#saving the workbook
wb.save("new.xlsx")
#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")
#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")
#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']
#deleting a sheet
del wb['sheet 0']
#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']
#checking the sheet value
ws['B2'].value
null
#adding value to cell
ws['B2'] = 367
#checking value
ws['B2'].value
367
We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.
For example:
import openpyxl
from openpyxl
import Workbook
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
ws['A9'] = '=SUM(A2:A8)'
wb.save("new2.xlsx")
The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.
Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().
For example:
Merge cells
#merge cells B2 to C9
ws.merge_cells('B2:C9')
ws['B2'] = "Merged cells"
Adding the above code to the previous example will merge cells as below.
#unmerge cells B2 to C9
ws.unmerge_cells('B2:C9')
The above code will unmerge cells from B2 to C9.
To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.
Example:
import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3
ws.add_image(img, 'A3')
wb.save("new2.xlsx")
Result:
Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:
Example
import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series
wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active
values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
chart.add_data(values)
ws.add_chart(chart, "E3")
wb.save("MyChart.xlsx")
Result
Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.
⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling
📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial
Subscribe: https://www.youtube.com/c/TechWithTim/featured
1670346000
Requirement is to create Modern pages with content, which includes images and text.
The Content is in SharePoint List. The pages are created from a Page Template.
To get Text part from Page template, use below PowerShell,
#get page textpart instance id
$parts=Get-PnPPageComponent -Page <pagename.aspx>
Execute the below PowerShell to create pages with HTML content from SharePoint List.
$logFile = "Logs\LogFile.log"
Start - Transcript - Path $logFile - Append
#Variables
$libName = "Site Pages"
$siteURL = "https://tenant.sharepoint.com/"
$contentType = "Group and Division Page"
$listname = "Content"
$sectionCategoy = "Our organisation"
#End
Try {
#Connect to PnP Online
$connection = Connect - PnPOnline - Url $siteURL - UseWebLogin - ReturnConnection - WarningAction Ignore
#Get items from Content list
$items = Get - PnPListItem - List $listName - PageSize 100
foreach($item in $items) {
if ($null - ne $item["Title"] - and $null - ne $item["Content"]) {
#Get Page webparts instance Id
#$parts = Get - PnPPageComponent - Page PageTemplate.aspx
# load the page template
$template = Get - PnPClientSidePage - Identity "Templates/Division-page-template"
#Get page name
$fullFileName = $item["Title"].Replace(" ", "_") + ".aspx"
#Create fileURL
$fileURL = $siteURL + $libName + "/" + $fullFileName
# save a new SharePoint Page based on the Page Template
$template.Save($fullFileName)
$page = Get - PnPPage - Identity $fullFileName
$htmlToInject = $item["Content"]
$htmlToInject = $htmlToInject.TrimStart('{"Html":"').TrimEnd('"}') - replace([regex]::Escape('\n')), '' - replace([regex]::Escape('<a href=\')),' < a href = ' -replace ([regex]:: Escape('\
">')),'" > ' -replace ([regex]::Escape(' & bull; % 09 ')),'
' -replace '
https:
/*','https://'
#Set PnP Page Text
Set-PnPPageTextPart -Page $page -InstanceId "9fab3ce6-0638-4008-a9b9-cf2b784245b5" -Text $htmlToInject
#publish page
Set-PnPPage -Identity $fullFileName -Title $item["Title"] -ContentType $contentType -Publish
#get site pages library
$sitepagelist= Get-PnPList -Identity 'Site Pages'
#get page Id and page Item to update section category
$pageItem=Get-PnPListItem -List $sitepagelist -Id $page.PageId
Set-PnPListItem -Values @{"SectionCategory" = $sectionCategoy} -List $sitepagelist -Identity $pageItem
}
else
{
Write-Host "Title or Content has no value"
}
}
}
Catch {
Write-Host "Error: $($_.Exception.Message)" -Foregroundcolor Red
}
Stop-Transcript
Original article source at: https://www.c-sharpcorner.com/
1671141060
When building a web application there is a good chance you’re going to need to work with images eventually, even if it is something as simple as allowing a user to upload a profile image. In theory this is a simple task, but in reality, your website theme is probably anticipating images of a certain resolution or aspect ratio. If the user tries to upload an image that doesn’t meet your requirements, it might break your theme.
We’re going to see how to include image manipulation capabilities in your Angular application using the popular cropperjs JavaScript package.
To get an idea of what we’re going to accomplish, take a look at the following animated image:
In the above animation you’ll notice a source image which has a crop box. Altering the crop box will affect the image preview to the right of the source image. This image preview is an entirely new image that represents our manipulations and it can be downloaded as such.
Before getting too involved with this tutorial, the assumption is that you’ve got the Angular CLI installed and configured. For context, I’m using Angular 8.0.2 in this example. If you’re using an older or newer version, things may vary slightly.
From the CLI, execute the following:
ng new image-cropper-example
The above command will start the project creation process. When prompted, choose the defaults as we won’t be doing anything particularly fancy when it comes to Angular.
After the project has been created, navigate into the project and execute the following:
npm install cropperjs --save
The above command will install our cropperjs JavaScript dependency. As a fun fact, jQuery is not a requirement for this example.
Installing the cropperjs
package will only install the JavaScript side of things. We’ll still need the CSS for visualizing our image manipulation box within the source image.
Open the project’s src/index.html file and include the following:
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Image Cropping Project</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/cropperjs/1.5.1/cropper.min.css">
</head>
<body>
<app-root></app-root>
</body>
</html>
The only change made was in the cropper.min.css file that is now included. You can use it as part of the CDN or download it to be included directly within your project.
Before we get into the core code, let’s create a component to hold our image manipulation code:
ng g component ImageCropper
The above command will create appropriate TypeScript, HTML, and CSS files for our new component. You’ll see how each of these are used in the next step.
We’re going to do most of our development in the new component that we had just created, but before we do that, you might want to find an image to use. For this example, the image should be placed in the project’s src/assets directory.
Open the project’s src/app/image-cropper/image-cropper.component.css file and include the following CSS:
.img-container {
width: 640px;
height: 480px;
float: left;
}
.img-preview {
width: 200px;
height: 200px;
float: left;
margin-left: 10px;
}
The above CSS is not critical to the success of our project, but it makes it a little more attractive to look at. Essentially we are defining the source canvas size and the destination image size.
Now open the project’s src/app/image-cropper/image-cropper.component.html file where we can add the markup for our component:
<div class="img-container">
<img #image [src]="imageSource" crossorigin>
</div>
<img [src]="imageDestination" class="img-preview">
We’re getting a little ahead of ourselves here, but we have two <img>
components, one for our source image and one for our destination image. Each component has a src
variable that we’ll define later in our TypeScript. Notice that the source image has an #image
attribute on it. This is a reference variable that we’ll use within the TypeScript, giving us access to the DOM element. Remember, we can’t just use query selectors in Angular like we can vanilla JavaScript.
With the component HTML out of the way, open the project’s src/app/image-cropper/image-cropper.component.ts file where we’ll do a bulk of the work:
import { Component, OnInit, ViewChild, Input, ElementRef } from '@angular/core';
import Cropper from "cropperjs";
@Component({
selector: 'image-cropper',
templateUrl: './image-croppper.component.html',
styleUrls: ['./image-croppper.component.css']
})
export class ImageCroppperComponent implements OnInit {
@ViewChild("image", { static: false })
public imageElement: ElementRef;
@Input("src")
public imageSource: string;
public imageDestination: string;
private cropper: Cropper;
public constructor() {
this.imageDestination = "";
}
public ngAfterViewInit() {
this.cropper = new Cropper(this.imageElement.nativeElement, {
zoomable: false,
scalable: false,
aspectRatio: 1,
crop: () => {
const canvas = this.cropper.getCroppedCanvas();
this.imageDestination = canvas.toDataURL("image/png");
}
});
}
public ngOnInit() { }
}
The above code is complete, but we’re going to break it down to explain what is happening. It isn’t much, but it is still good to know.
At the top we are importing the cropperjs
package that we had previously downloaded and installed.
Remember that #image
reference from the HTML file? We’re accessing it through the @ViewChild
and mapping it to a variable to be used within our TypeScript code. The @Input
is referring to a possible attribute called src
which we’ll see later.
Because we’re working with elements in the view, we need to wait until the view has initialized before we make any attempts. To do this we can make use of the ngAfterViewInit
method. Inside the ngAfterViewInit
method we initialize our Cropper
using the entire imageElement
that we obtained from the HTML. During the initialization process we can define a few options. There are quite a few to choose from, but for us, we’re going to disable zooming and scaling of our image. In other words we’re only going to allow moving and cropping. We’re also going to define a crop box with a square aspect ratio. None of these are required options. The important option is the crop
method, one of many possible event methods. The crop
method is triggered every time something happens to the crop box. This is important to us because we want to constantly update our preview image.
The preview image is created by getting the cropped canvas and exporting it to an image.
At this point in time our component is done, but not yet being used. To use it, open the project’s src/app/app.component.html file and include the following:
<image-cropper src="assets/angular.png"></image-cropper>
Notice that we’re using image-cropper
which is the selector
value from the project’s src/app/image-cropper/image-cropper.component.ts file. We’re also using src
which was the @Input
that we defined in that same TypeScript file. The src
should reference an image within our src/assets directory.
You just saw how to add image manipulation functionality to your Angular web applications through the cropperjs package. If you’d like to upload these altered images, you might want to check out my previous tutorial titled, Upload Files to Node.js using Angular.
A video version of this tutorial can be found below.
Original article source at: https://www.thepolyglotdeveloper.com/