Deep Learning for Anomaly Detection: A Comprehensive Survey

Deep Learning for Anomaly Detection: A Comprehensive Survey

Reviewing challenges, methods and opportunities in deep anomaly detection. This post summarizes a comprehensive survey paper on deep learning for anomaly detection .

Reviewing challenges, methods and opportunities in deep anomaly detection

This post summarizes a comprehensive survey paper on deep learning for anomaly detection — “Deep Learning for Anomaly Detection: A Review” [1], discussing challenges, methods and opportunities in this direction.

Anomaly detection, a.k.a. outlier detection, has been an active research area for several decades, due to its broad applications in a large number of key domains such as risk management, compliance, security, financial surveillance, health and medical risk, and AI safety. Although it is a problem widely studied in various communities including data mining, machine learning, computer vision and statistics, there are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection has emerged as a critical direction towards addressing these challenges. However, there is a lack of systematic review and discussion of the research progress in this direction. We aim to present a comprehensive review of this direction to discuss the main challenges, a large number of state-of-the-art methods, how they address the challenges, as well as future opportunities.

Largely Unsolved Challenges in Anomaly Detection

Although anomaly detection is a lasting active research area for years, there are still a number of largely unsolved challenges due to some unique and complex nature of anomalies, e.g., unknownness _(they remain unknown until actually occur), _heterogeneity _(different anomalies demonstrate completely different abnormal characteristics), _rareness _(anomalies are rarely occurred data instances), _diverse form of anomalies (point anomaly, contextual anomaly, and group anomaly).

One of the most challenging issues is the difficulty to achieve high anomaly detection recall rate (Challenge #1). Since anomalies are highly rare and heterogeneous, it is difficult to identify all of the anomalies. Many normal instances are wrongly reported as anomalies while true yet sophisticated anomalies are missed.

Anomaly detection in high-dimensional and/or not-independent data (Challenge #2) is also a significant challenge. Anomalies often exhibit evident abnormal characteristics in a low-dimensional space yet become hidden and unnoticeable in a high-dimensional space. High-dimensional anomaly detection has been a long-standing problem. Subspace/feature selection-based methods may be a straightforward solution. However, identifying intricate (e.g., high-order, nonlinear and heterogeneous) feature interactions and couplings may be essential in high-dimensional data yet remains a major challenge for anomaly detection.

Due to the difficulty and cost of collecting large-scale labeled anomaly data, it is important to have data-efficient learning of normality/abnormality (Challenge #3). wo major challenges are how to learn expressive normality/abnormality representations with a small amount of labeled anomaly data and how to learn detection models that are generalized to novel anomalies uncovered by the given labeled anomaly data.

Many weakly/semi-supervised anomaly detection methods assume the given labeled training data is clean, which can be highly vulnerable to noisy instances that are mistakenly labeled as an opposite class label. One main challenge here is how to develop noise-resilient anomaly detection (Challenge #4).

Most of existing methods are for point anomalies, which cannot be used for conditional anomaly and group anomaly since they exhibit completely different behaviors from point anomalies. One main challenge here is to incorporate the concept of conditional/group anomalies into anomaly measures/models for the detection of those complex anomalies (Challenge #5).

In many critical domains there may be some major risks if anomaly detection models are directly used as black-box models. For example, the _rare _data instances reported as anomalies may lead to possible algorithmic bias against the minority groups presented in the data, such as under-represented groups in fraud detection and crime detection systems. An effective approach to mitigate this type of risk is to have anomaly explanation (Challenge #6) algorithms that provide straightforward clues about why a specific data instance is identified as anomaly. Providing such explanation can be as important as detection accuracy in some applications. To derive anomaly explanation from specific detection methods is still a largely unsolved problem, especially for complex models. Developing inherently interpretable anomaly detection models is also crucial, but it remains a main challenge to well balance the model’s interpretability and effectiveness.

ai & machine learning anomaly detection deep learning deep learning

What is Geek Coin

What is GeekCash, Geek Token

Best Visual Studio Code Themes of 2021

Bootstrap 5 Tutorial - Bootstrap 5 Crash Course for Beginners

Nest.JS Tutorial for Beginners

Hello Vue 3: A First Look at Vue 3 and the Composition API

Hire Machine Learning Engineer | Offshore Machine Learning Experts

We are a Machine Learning Services provider offering custom AI solutions, Machine Learning as a service & deep learning solutions. Hire Machine Learning experts & build AI Chatbots, Neural networks, etc. 16+ yrs & 2500+ clients.

Machine Learning Vs Deep Learning: Difference Between Machine Learning and Deep Learning

This article will simply explain the concept which will help you understand the difference between Machine Learning and Deep Learning. 

AI vs Machine Learning vs Deep Learning | AI vs ML vs DL | Machine Learning Training with Python

This video is about the difference between the three terms Artificial Intelligence, Machine Learning & Deep Learning. AI vs ML vs DL. AI vs Machine Learning vs Deep Learning | AI vs ML vs DL | Machine Learning Training with Python

Top Deep Learning Development Services | Hire Deep Learning Developer

Inexture's Deep learning Development Services helps companies to develop Data driven products and solutions. Hire our deep learning developers today to build application that learn and adapt with time.

These Tips Will Help You Step Up Anomaly Detection Using ML

Learn different Machine Learning-Based Approaches for Anomaly Detection and how to apply on the dataset to solve a problem.