varun singh

1659064099

5 Advantages of Using Azure DevOps


There's been plenty of discussion lately regarding Azure DevOps and may be causing you to ask yourself what exactly does Azure DevOps to you in every way? The sky blue DevOps is the name used to describe the rebranding and renaming of Microsoft's Visual Studio Team Services (VSTS) Web-based version of Team Foundation Server. It's a great product overall. regardless what exactly does Azure DevOps/VSTS/TFS mean?
It started out as an open source tool for teams to join together and write code TFS was later developed into an improvement application tasks that were able to be tested and tested before being implemented.


If you're thinking "My company isn't a place improvements, so why is it advisable that you to get involved in Azure DevOps?" The answer lies in the title: Dev Ops. The emergence of Azure Certification and the concept of foundation as code has shattered the lines between development and activity and, along as a result, the acceptance of new methods from instruments.


Here are five reasons to consider Azure DevOps to your company Collaboration sharing is the fundamental requirement for DevOps on Azure. The capability to supervise and maintain the code at a halfway point is crucial to any organization's goals of improving. Whatever your organization comprises a collection of PowerShell or VB scripts you use to create servers, storing your software in Azure DevOps could provide the ideal place to manage your code. The ability to create code is an essential aspect of managing code. whether you opt to use Team Foundation Version control or GIT,

 Azure DevOps takes care of the task for you.
Work Items Even in the possibility that you do not have a item to work with to, you can manage the arrangement of your frameworks using work items. Work things are a way to address an "thing, "whether it's the server or the risk of an endeavor or a framework problem is your choice; however the power lies in the moment when you design the work items in the context of an interaction design. A layout that is part of your workflow allows you to showcase your work activities in relation to the components that comprise the Agile Framework (which helps to promote programming) and an alternative model referred to as"the Capability Maturity Model Integration (CMMI) which is a fantastic choice to supervise frameworks. When you organize the tasks, they will assist your team to break down the complexity that your structures have into practical work.


Persistent Integration and Deliver for companies that operate on a programming basis, Azure DevOps gives a solid platform that allows you to operate your software using pipelines, allowing continuous combination and delivery. If you're transferring arrangements that are hosted by Azure or even one hosted by AWS it's possible to use this pipeline. Azure DevOps Pipeline for CICD.. It will help you move your solution from the development stage to the conveyance stage.


With a wide commercial centre for modules and reconciliations, framework as-code could be incorporated into the pipeline in such a way that the framework's head is able to automate sweeping modifications to their surroundings in a single location.
The Open Platform Azure DevOps provides a wide integration with industry and local area tools. The single shut-off arrangement that was the base of TFS. In the past, we've discussed a commercial center that has several expansions available and regardless whether Azure Develops doesn't accomplish something at all there's a good chance that there's a tool which could be used. Microsoft is a prominent pioneer in encouraging collaboration with competitors in this open area. This is evident in the enhancements to mix are available from AWS and Slack all the way to ServiceNow. The entire process of combination is designed with the client in mind. Sky blue DevOps is aspires to be among the devices that can meet your needs for advancement. It is currently an Software Company.


Determination A significant aspect of a successful business is its ability to use innovative thinking and an uncompromising and cautious method. This is crucial in a time when there's a huge list of organizations with a plan which have gone from success to failure. Implementing an Cloud working Model and making it the foundation of an organisation's IT base will help put the organization in order. In order to run a successful enterprise, greater cooperation and communication across the entire enterprise is essential. Therefore, we created this rule to encourage discussion as the next innovation options are considered. If the crowd of specialists and non-specialists meet, they will be able to understand what is going on in the minds of the different.

What is GEEK

Buddha Community

5 Advantages of Using Azure DevOps
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

How to Extend your DevOps Strategy For Success in the Cloud?

DevOps and Cloud computing are joined at the hip, now that fact is well appreciated by the organizations that engaged in SaaS cloud and developed applications in the Cloud. During the COVID crisis period, most of the organizations have started using cloud computing services and implementing a cloud-first strategy to establish their remote operations. Similarly, the extended DevOps strategy will make the development process more agile with automated test cases.

According to the survey in EMEA, IT decision-makers have observed a 129%* improvement in the overall software development process when performing DevOps on the Cloud. This success result was just 81% when practicing only DevOps and 67%* when leveraging Cloud without DevOps. Not only that, but the practice has also made the software predictability better, improve the customer experience as well as speed up software delivery 2.6* times faster.

3 Core Principle to fit DevOps Strategy

If you consider implementing DevOps in concert with the Cloud, then the

below core principle will guide you to utilize the strategy.

  • It is indispensable to follow a continuous process, including all stages from Dev to deploy with the help of auto-provisioning resources of the target platform.
  • The team always keeps an eye on major and minor application changes that can typically appear within a few hours of development to operation. However, the support of unlimited resource provisioning is needed at the stage of deployment.
  • Cloud or hybrid configuration can associate this process, but you must confirm that configuration should support multiple cloud brands like Microsoft, AWS, Google, any public and private cloud models.

Guide to Remold Business with DevOps and Cloud

Companies are now re-inventing themselves to become better at sensing the next big thing their customers need and finding ways with the Cloud based DevOps to get ahead of the competition.

#devops #devops-principles #azure-devops #devops-transformation #good-company #devops-tools #devops-top-story #devops-infrastructure

Nabunya  Jane

Nabunya Jane

1624939448

A side-by-side comparison of Azure DevOps and GitHub

Collaboration is a crucial element in software development; having the right collaboration tools can make a difference and boost the entire team’s productivity. Microsoft introduced its Application Lifecycle Management product with Team Foundation Server (aka TFS) on March 16th, 2006. This software had to be installed on a server within your network and had a user-based license. To reduce the complexity of setting up and maintaining the server, Microsoft released Visual Studio Online–an Azure-based, server-hosted version of TFS. Microsoft manages and administers the servers as well as taking care of backups. To clarify its commitment to agile and DevOps, Microsoft rebranded Visual Studio Online in 2015 as Visual Studio Team Services and later as Azure DevOps in 2018.

Since its beginning, this platform has changed significantly. For example, it introduced a customizable, task-based build service, release gates, and much more. Many organizations across the world made a significant investment to run their businesses on Azure DevOps. For this reason, after Microsoft announced the acquisition of GitHub in mid-2018, GitHub announced its automated workflow system, which is much like Azure Pipelines. It’s called GitHub Actions. Due to the switch, some companies became afraid of having to migrate their practices again. In the past few months, I have gotten several questions about whether it is still worth starting new projects on Azure DevOps, especially after the release of features like GitHub Advanced Security and GitHub Codespaces (similar to Visual Studio Codespaces). In this article, I’ll clarify the differences between these two platforms, and I’ll give you some advice on how you should be using them to your advantage.

Data Residency

To meet the needs of companies that want to keep their data within their network, both GitHub and Azure DevOps provide a server version of their platform. GitHub version is called GitHub Enterprise Server, and the Azure DevOps version is called Azure DevOps Server. Both versions require the client to install and maintain both software and machine.

On the other hand, there is a critical difference between their cloud-hosted version. While Azure DevOps Service allows you to choose the Azure region, which is closes to your organization’s location, to decrease the eventuality of networking latency during the creation of your organization (collection of projects). GitHub doesn’t provide this feature.

Project management and bug tracking

GitHub

At the core of GitHub project management, we can find the issues. This task can be used to track any work item, from feature to bugs, and can be sorted into a Kanban-style board for easy consultation. The issue’s description also supports markdown syntax. Adding a specific keyword #issue-number (ex: #3) can associate the issue with another one. Each issue can be assigned to multiple developers, be linked to pull requests, and have various labels assigned to it. One can link a pull request to an issue to show that a fix is in progress and automatically close the issue when someone merges the pull request.

GitHub Kanban board

  • Lastly, multiple issues can be grouped into milestones that will give immediate feedback about the completion percentage. Milestones can also include a due date.

#azure-devops #microsoft #azure #github #azure devops #azure devops and github

Ruthie  Bugala

Ruthie Bugala

1619601744

Azure Synapse Analytics Database CI/CD using Azure Function

In this article, I will discuss an Azure Database CI/CD approach using Azure Premium Function and Jenkins pipeline. I will only explain the architecture and the approach I took to implement the Database CI/CD pipeline.

Problem Statement and Challenges

I was working on a project where I had to build a Database deployment pipeline using enterprise GitHub which is only accessible through the company’s internal network. Also, port 1433 was blocked from the internal network to the Azure Synapse public endpoint for security reasons. Hence the only option I had was to run my pipeline in an internal network so that I could access GitHub which I was using for my Database Deployment Source Control and send the SQL code to Azure Synapse using Azure function HTTP post as port 1433 was blocked.

#azure #devops #azure-synapse-analytics #azure-devops #azure-functions