Hal  Sauer

Hal Sauer


Increase Code Quality with Github Actions

We are always writing, every day, tons of lines of code. We add new features and change existing ones. We fix bugs and, sometimes, we may create some bugs too.
You can avoid basic bugs by creating some automatic routines such as lint and test your app every push or pull request.
Let me show you a simple example of a bug easily catch by a lint workflow.
You have to implement a new feature on your app that changes a function calculation using parameters.

#github-actions #github #nodejs

What is GEEK

Buddha Community

Increase Code Quality with Github Actions
Tyrique  Littel

Tyrique Littel


Static Code Analysis: What It Is? How to Use It?

Static code analysis refers to the technique of approximating the runtime behavior of a program. In other words, it is the process of predicting the output of a program without actually executing it.

Lately, however, the term “Static Code Analysis” is more commonly used to refer to one of the applications of this technique rather than the technique itself — program comprehension — understanding the program and detecting issues in it (anything from syntax errors to type mismatches, performance hogs likely bugs, security loopholes, etc.). This is the usage we’d be referring to throughout this post.

“The refinement of techniques for the prompt discovery of error serves as well as any other as a hallmark of what we mean by science.”

  • J. Robert Oppenheimer


We cover a lot of ground in this post. The aim is to build an understanding of static code analysis and to equip you with the basic theory, and the right tools so that you can write analyzers on your own.

We start our journey with laying down the essential parts of the pipeline which a compiler follows to understand what a piece of code does. We learn where to tap points in this pipeline to plug in our analyzers and extract meaningful information. In the latter half, we get our feet wet, and write four such static analyzers, completely from scratch, in Python.

Note that although the ideas here are discussed in light of Python, static code analyzers across all programming languages are carved out along similar lines. We chose Python because of the availability of an easy to use ast module, and wide adoption of the language itself.

How does it all work?

Before a computer can finally “understand” and execute a piece of code, it goes through a series of complicated transformations:

static analysis workflow

As you can see in the diagram (go ahead, zoom it!), the static analyzers feed on the output of these stages. To be able to better understand the static analysis techniques, let’s look at each of these steps in some more detail:


The first thing that a compiler does when trying to understand a piece of code is to break it down into smaller chunks, also known as tokens. Tokens are akin to what words are in a language.

A token might consist of either a single character, like (, or literals (like integers, strings, e.g., 7Bob, etc.), or reserved keywords of that language (e.g, def in Python). Characters which do not contribute towards the semantics of a program, like trailing whitespace, comments, etc. are often discarded by the scanner.

Python provides the tokenize module in its standard library to let you play around with tokens:



import io


import tokenize



code = b"color = input('Enter your favourite color: ')"



for token in tokenize.tokenize(io.BytesIO(code).readline):





TokenInfo(type=62 (ENCODING),  string='utf-8')


TokenInfo(type=1  (NAME),      string='color')


TokenInfo(type=54 (OP),        string='=')


TokenInfo(type=1  (NAME),      string='input')


TokenInfo(type=54 (OP),        string='(')


TokenInfo(type=3  (STRING),    string="'Enter your favourite color: '")


TokenInfo(type=54 (OP),        string=')')


TokenInfo(type=4  (NEWLINE),   string='')


TokenInfo(type=0  (ENDMARKER), string='')

(Note that for the sake of readability, I’ve omitted a few columns from the result above — metadata like starting index, ending index, a copy of the line on which a token occurs, etc.)

#code quality #code review #static analysis #static code analysis #code analysis #static analysis tools #code review tips #static code analyzer #static code analysis tool #static analyzer

Myriam  Rogahn

Myriam Rogahn


GitHub Arctic Code Vault: Overview

Are you an Arctic Code Vault Contributor or have seen someone posting about it and don’t know what it is. So let’s take a look at what is an Arctic Code Vault Contributor and who are the ones who gets this batch.

GitHub, the world’s largest open-source platform for software and programs has safely locked the data of huge value and magnitude in a coal mine in Longyearbyen’s Norwegian town in the Arctic region.

Back in November 2019, GitHub Arctic Code Vault was first announced.

The GitHub Arctic Code Vault is a data repository preserved in the Arctic

World Archive (AWA), a very-long-term archival facility 250 meters deep in the permafrost of an Arctic mountain. The archive is located in a decommissioned coal mine in the Svalbard archipelago, closer to the North Pole than the Arctic Circle.

Last year, GitHub said that it plans to capture a snapshot of every active

public repository on 02/02/2020 and preserve that data in the Arctic

Code Vault.

The project began on February 2, when the firm took a snapshot of all of

GitHub’s active public repositories to store them in the vault. They initially intended to travel to Norway and personally escort the world’s open-source technology to the Arctic but their plans were derailed by the global pandemic. Then, they had to wait until 8 Julyfor the Arctic Data Vault data to be deposited.

GitHub announced that the code was successfully deposited in the Arctic Code Vault on July 8, 2020. Over the past several months, GitHub worked

with its archive partners Piql to write the 21TB of GitHub repository data to 186 reels of piqlFilm (digital photosensitive archival film).

GitHub’s strategic software director, Julia Metcalf, has written a blog post

on the company’s website notifying the completion of GitHub’s Archive Program on July 8th. Discussing the objective of the Archive Program, Metcalf wrote “Our mission is to preserve open-source software for future generations by storing your code in an archive built to last a thousand years.”

The Arctic Code Vault is only a small part of the wider GitHub Archive

Program, however, which sees the company partner with the Long Now

Foundation, Internet Archive, Software Heritage Foundation, Microsoft

Research and others.

How the cold storage will last 1,000 years?

Svalbard has been regulated by the international Svalbard Treaty as a demilitarized zone. Home to the world’s northernmost town, it is one of the most remote and geopolitically stable human habitations on Earth.

The AWA is a joint initiative between Norwegian state-owned mining company Store Norske Spitsbergen Kulkompani (SNSK) and very-long-term digital preservation provider Piql AS. AWA is devoted to archival storage in perpetuity. The film reels will be stored in a steel-walled container inside a sealed chamber within a decommissioned coal mine on the remote archipelago of Svalbard. The AWA already preserves historical and cultural data from Italy, Brazil, Norway, the Vatican, and many others.

What’s in the 02/02/2020 snapshot?

The 02/02/2020 snapshot archived in the GitHub Arctic Code Vault will

sweep up every active public GitHub repository, in addition to significant dormant repos.

The snapshot will include every repo with any commits between the announcement at GitHub Universe on November 13th and 02/02/2020,

every repo with at least 1 star and any commits from the year before the snapshot (02/03/2019 – 02/02/2020), and every repo with at least 250 stars.

The snapshot will consist of the HEAD of the default branch of each repository, minus any binaries larger than 100KB in size—depending on available space, repos with more stars may retain binaries. Each repository will be packaged as a single TAR file. For greater data density and integrity, most of the data will be stored QR-encoded and compressed. A human-readable index and guide will itemize the location of each repository and explain how to recover the data.

The company further shared that every reel of the archive includes a copy

of the “Guide to the GitHub Code Vault” in five languages, written with input from GitHub’s community and available at the Archive Program’s own GitHub repository.

#github #open-source #coding #open-source-contribution #contributing-to-open-source #github-arctic-code-vault #arctic-code-vault #arctic-code-vault-contributor

Tyrique  Littel

Tyrique Littel


Effective Code Reviews: A Primer

Peer code reviews as a process have increasingly been adopted by engineering teams around the world. And for good reason — code reviews have been proven to improve software quality and save developers’ time in the long run. A lot has been written about how code reviews help engineering teams by leading software engineering practitioners. My favorite is this quote by Karl Wiegers, author of the seminal paper on this topic, Humanizing Peer Reviews:

Peer review – an activity in which people other than the author of a software deliverable examine it for defects and improvement opportunities – is one of the most powerful software quality tools available. Peer review methods include inspections, walkthroughs, peer deskchecks, and other similar activities. After experiencing the benefits of peer reviews for nearly fifteen years, I would never work in a team that did not perform them.

It is worth the time and effort to put together a code review strategy and consistently follow it in the team. In essence, this has a two-pronged benefit: more pair of eyes looking at the code decreases the chances of bugs and bad design patterns entering your codebase, and embracing the process fosters knowledge sharing and positive collaboration culture in the team.

Here are 6 tips to ensure effective peer reviews in your team.

1. Keep the Changes Small and Focused

Code reviews require developers to look at someone else’s code, most of which is completely new most of the times. Too many lines of code to review at once requires a huge amount of cognitive effort, and the quality of review diminishes as the size of changes increases. While there’s no golden number of LOCs, it is recommended to create small pull-requests which can be managed easily. If there are a lot of changes going in a release, it is better to chunk it down into a number of small pull-requests.

2. Ensure Logical Coherence of Changes

Code reviews are the most effective when the changes are focused and have logical coherence. When doing refactoring, refrain from making behavioral changes. Similarly, behavioral changes should not include refactoring and style violation fixes. Following this convention prevents unintended changes creeping in unnoticed in the code base.

3. Have Automated Tests, and Track Coverage

Automated tests of your preferred flavor — units, integration tests, end-to-end tests, etc. help automatically ensure correctness. Consistently ensuring that changes proposed are covered by some kind of automated frees up time for more qualitative review; allowing for a more insightful and in-depth conversation on deeper issues.

4. Self-Review Changes Before Submitting for Peer Review

A change can implement a new feature or fix an existing issue. It is recommended that the requester submits only those changes that are complete, and tested for correctness manually. Before creating the pull-request, a quick glance on what changes are being proposed helps ensure that no extraneous files are added in the changeset. This saves tons of time for the reviewers.

5. Automate What Can Be Automated

Human review time is expensive, and the best use of a developer’s time is reviewing qualitative aspects of code — logic, design patterns, software architecture, and so on. Linting tools can help automatically take care of style and formatting conventions. Continuous Quality tools can help catch potential bugs, anti-patterns and security issues which can be fixed by the developer before they make a change request. Most of these tools integrate well with code hosting platforms as well.

6. Be Positive, Polite, and Respectful

Finally, be cognizant of the fact that people on both sides of the review are but human. Offer positive feedback, and accept criticism humbly. Instead of beating oneself upon the literal meaning of words, it really pays off to look at reviews as people trying to achieve what’s best for the team, albeit in possibly different ways. Being cognizant of this aspect can save a lot of resentment and unmitigated negativity.

#agile #code quality #code review #static analysis #code analysis #code reviews #static analysis tools #code review tips #continuous quality #static analyzer

Samanta  Moore

Samanta Moore


Guidelines for Java Code Reviews

Get a jump-start on your next code review session with this list.

Having another pair of eyes scan your code is always useful and helps you spot mistakes before you break production. You need not be an expert to review someone’s code. Some experience with the programming language and a review checklist should help you get started. We’ve put together a list of things you should keep in mind when you’re reviewing Java code. Read on!

1. Follow Java Code Conventions

2. Replace Imperative Code With Lambdas and Streams

3. Beware of the NullPointerException

4. Directly Assigning References From Client Code to a Field

5. Handle Exceptions With Care

#java #code quality #java tutorial #code analysis #code reviews #code review tips #code analysis tools #java tutorial for beginners #java code review

Hal  Sauer

Hal Sauer


Increase Code Quality with Github Actions

We are always writing, every day, tons of lines of code. We add new features and change existing ones. We fix bugs and, sometimes, we may create some bugs too.
You can avoid basic bugs by creating some automatic routines such as lint and test your app every push or pull request.
Let me show you a simple example of a bug easily catch by a lint workflow.
You have to implement a new feature on your app that changes a function calculation using parameters.

#github-actions #github #nodejs