Gordon  Matlala

Gordon Matlala

1671625260

How to Use Git Worktrees

tldr;

Most of us use Git every day, but generally use only the features that we are familiar with and allow us to do our job. There's nothing wrong with this at all, but learning new tricks can take your productivity up a level! With that in mind, let me introduce you to Git Worktrees.

Git Worktrees allow you to pull a git repository to your computer and then work on multiple branches at a time if desired. A standard git clone command pulls the repository to your machine and starts you working on a particular branch. If you need to switch branches, you have to either commit and push your code or stash the changes. When you clone the repo with the intent to use worktrees, you don't check out a particular branch initially. Let's learn how to use Git Worktrees!

Cloning Your Repo

Let's start by cloning the repository to your machine.

$ git clone --bare git@github.com:pjlamb12/worktree-demo.git worktree-demo

The above command looks similar to your normal git clone, with one important extra piece: --bare. This flag is what clones the repo to your machine without checking out a particular branch. You can read more about the flag here. The last part of the command, worktree-demo, names the folder that the repository will be cloned into. Normally git clone will clone the repo into a folder that's named the same as the repository URL, minus the .git. git clone --bare will keep the .git extension on the folder when cloning. If you don't want the .git on the folder name, provide the name of the folder as I've done above.

At this point, you have the repository cloned to your machine. If you change into the directory and list the contents, you'll see a few files like HEAD, config, and description, along with a couple folders like hooks, info, and objects. This is just an example; yours may not be exactly the same.

If you run the git status command, you'll see an error that says something along the lines of, "this operation must be run in a work tree". This lets you know that you can't do any work on your repository in this main folder. Let's look next at how to create a worktree so you can make some changes to your app.

Adding a Worktree

Let's add our first worktree, which we'll call main and will be based off the HEAD of the repo. You can add that worktree like this:

$ git worktree add main

If you list the contents of the directory, you'll now see a new folder called main. If you change into that directory and list the contents you'll see your application code. Also, git status will now give you the status that you expect to see. You'll no longer see the error mentioned above.

You can now always view the code in your repository at the main branch. To update the worktree, run the git pull command. This will get all the latest commits to the branch and update your worktree. I recommend not doing any work on your application in this worktree, however. This worktree is useful to have on your computer and ready to go so that you can troubleshoot any issues that teammates may be having, for example. If you want to make a change to the application, create a new worktree just like you would create a new branch.

Adding a Worktree with a New Branch

The command to create a new worktree and a new branch is similar to the add command above, but with an extra flag.

$ git worktree add -b my-new-branch worktree-name

The flag you need to provide is the -b branch-name flag. Whatever you use as the value for this flag will be the name of the branch when you push it to the repository. The last argument, worktree-name, is the name of the worktree on your computer and will be the name of the folder where the code is stored. This command does the same thing as the first add command, but a new branch is created with the given name.

Now that you have a worktree and branch created to make your changes, you can work on your application the same as you always do. Make changes, commit them, push them, and then merge the pull request. The first time you push the code, remember to use the --set-upstream flag:

$ git push --set-upstream origin my-new-branch

After you've used this flag the first time, git push will suffice.

Add a Worktree Based on a Remote Branch

The above commands are helpful but don't cover all situations. Sometimes you need to help your coworker with an issue they are seeing on their branch. This is where you can really see the benefits of worktrees. You can leave the worktree that you're working on untouched on your machine, and add a new worktree based on your coworker's branch. You can add this new worktree like this:

$ git worktree add worktree-name branch-name

Again, this is similar to the first add command but the branch-name argument will start you off on a branch in the repository instead of from the HEAD commit. You'll be able to change into the worktree folder and browse the code as your coworker is seeing it, but you won't have been required to commit your unfinished code to switch branches.

Updating a Worktree

Often when you're working on a feature branch the main branch has someone else's code merged to it. At that point you'll need to update your feature branch with rebase or merge. These same methods of updating your worktree can be used. You can update your worktree by rebasing or merging. You can decide the which method you would like to use. This article explains the differences between rebase and merge.

Before merging or rebasing, make sure that your local main worktree has been updated with git pull. After your local worktree is updated, you can merge or rebase your feature branch.

Removing a Worktree

After you finish up with a worktree, you'll want to remove the worktree from your machine. Each worktree will take up space on your hard drive, so you'll eventually run out room if you don't remove unused workspaces. You can remove them with the remove command:

$ git worktree remove worktree-name

The worktree and all related files will be removed from your computer.

Listing Worktrees

If you need to list the worktrees you've created, you can use the list command:

$ git worktree list

This will list all the local worktrees you've created on your machine.

Conclusion

When I found out about worktrees, I could see the potential benefits immediately. The ability to have multiple branches checked out on your computer at a single time is really powerful, especially when working with a team. Gone are the days of committing completely unfinished code to your feature branch so you can switch branches to help a coworker. It's not necessarily a "one size fits all" solution, but I'm excited about the possibilities. Hopefully this article helps you get started!

Original article source at: https://www.prestonlamb.com/

#git #work #trees 

What is GEEK

Buddha Community

How to Use Git Worktrees
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Madyson  Reilly

Madyson Reilly

1604109000

Best Practices for Using Git

Git has become ubiquitous as the preferred version control system (VCS) used by developers. Using Git adds immense value especially for engineering teams where several developers work together since it becomes critical to have a system of integrating everyone’s code reliably.

But with every powerful tool, especially one that involves collaboration with others, it is better to establish conventions to follow lest we shoot ourselves in the foot.

At DeepSource, we’ve put together some guiding principles for our own team that make working with a VCS like Git easier. Here are 5 simple rules you can follow:

1. Make Clean, Single-Purpose Commits

Oftentimes programmers working on something get sidetracked into doing too many things when working on one particular thing — like when you are trying to fix one particular bug and you spot another one, and you can’t resist the urge to fix that as well. And another one. Soon, it snowballs and you end up with so many changes all going together in one commit.

This is problematic, and it is better to keep commits as small and focused as possible for many reasons, including:

  • It makes it easier for other people in the team to look at your change, making code reviews more efficient.
  • If the commit has to be rolled back completely, it’s far easier to do so.
  • It’s straightforward to track these changes with your ticketing system.

Additionally, it helps you mentally parse changes you’ve made using git log.

#open source #git #git basics #git tools #git best practices #git tutorials #git commit

7 Best Practices in GIT for Your Code Quality

There is no doubt that Git plays a significant role in software development. It allows developers to work on the same code base at the same time. Still, developers struggle for code quality. Why? They fail to follow git best practices. In this post, I will explain seven core best practices of Git and a Bonus Section.

1. Atomic Commit

Committing something to Git means that you have changed your code and want to save these changes as a new trusted version.

Version control systems will not limit you in how you commit your code.

  • You can commit 1000 changes in one single commit.
  • Commit all the dll and other dependencies
  • Or you can check in broken code to your repository.

But is it good? Not quite.

Because you are compromising code quality, and it will take more time to review codeSo overall, team productivity will be reduced. The best practice is to make an atomic commit.

When you do an atomic commit, you’re committing only one change. It might be across multiple files, but it’s one single change.

2. Clarity About What You Can (& Can’t) Commit

Many developers make some changes, then commit, then push. And I have seen many repositories with unwanted files like dll, pdf, etc.

You can ask two questions to yourself, before check-in your code into the repository

  1. Are you suppose to check-in all these files?
  2. Are they part of your source code?

You can simply use the .gitignore file to avoid unwanted files in the repository. If you are working on more then one repo, it’s easy to use a global .gitignore file (without adding or pushing). And .gitignore file adds clarity and helps you to keep your code clean. What you can commit, and it will automatically ignore the unwanted files like autogenerated files like .dll and .class, etc.

#git basics #git command #git ignore #git best practices #git tutorial for beginners #git tutorials

Rupert  Beatty

Rupert Beatty

1617875220

Git Commands You Can Use To Dig Through Your Git History

In this short article, we’ll be exploring some quick  git commands that can help us in digging through our repositories’ history of commits. We’ll look at

  1. git log
  2. git shortlog
  3. git show
  4. git rev-list

#git #git-log #git-commands #git-history #aws

Why Use WordPress? What Can You Do With WordPress?

Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?

WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:

1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.

2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.

3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.

4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.

5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.

6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.

Read More

#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website