1632772800
In this video, we will be looking at how we can view the source code of a website using a mobile phone.
1675304280
We are back with another exciting and much-talked-about Rails tutorial on how to use Hotwire with the Rails application. This Hotwire Rails tutorial is an alternate method for building modern web applications that consume a pinch of JavaScript.
Rails 7 Hotwire is the default front-end framework shipped with Rails 7 after it was launched. It is used to represent HTML over the wire in the Rails application. Previously, we used to add a hotwire-rails gem in our gem file and then run rails hotwire: install. However, with the introduction of Rails 7, the gem got deprecated. Now, we use turbo-rails and stimulus rails directly, which work as Hotwire’s SPA-like page accelerator and Hotwire’s modest JavaScript framework.
Hotwire is a package of different frameworks that help to build applications. It simplifies the developer’s work for writing web pages without the need to write JavaScript, and instead sending HTML code over the wire.
Introduction to The Hotwire Framework:
It uses simplified techniques to build web applications while decreasing the usage of JavaScript in the application. Turbo offers numerous handling methods for the HTML data sent over the wire and displaying the application’s data without actually loading the entire page. It helps to maintain the simplicity of web applications without destroying the single-page application experience by using the below techniques:
Turbo Frames: Turbo Frames help to load the different sections of our markup without any dependency as it divides the page into different contexts separately called frames and updates these frames individually.
Turbo Drive: Every link doesn’t have to make the entire page reload when clicked. Only the HTML contained within the tag will be displayed.
Turbo Streams: To add real-time features to the application, this technique is used. It helps to bring real-time data to the application using CRUD actions.
It represents the JavaScript framework, which is required when JS is a requirement in the application. The interaction with the HTML is possible with the help of a stimulus, as the controllers that help those interactions are written by a stimulus.
Not much information is available about Strada as it has not been officially released yet. However, it works with native applications, and by using HTML bridge attributes, interaction is made possible between web applications and native apps.
Simple diagrammatic representation of Hotwire Stack:
As we are implementing the Ruby on Rails Hotwire tutorial, make sure about the following installations before you can get started.
Looking for an enthusiastic team of ROR developers to shape the vision of your web project?
Contact Bacancy today and hire Ruby developers to start building your dream project!
Find the following commands to create a rails application.
mkdir ~/projects/railshotwire
cd ~/projects/railshotwire
echo "source 'https://rubygems.org'" > Gemfile
echo "gem 'rails', '~> 7.0.0'" >> Gemfile
bundle install
bundle exec rails new . --force -d=postgresql
Now create some files for the project, up till now no usage of Rails Hotwire can be seen.
Fire the following command in your terminal.
echo "class HomeController < ApplicationController" > app/controllers/home_controller.rb
echo "end" >> app/controllers/home_controller.rb
echo "class OtherController < ApplicationController" > app/controllers/other_controller.rb
echo "end" >> app/controllers/home_controller.rb
echo "Rails.application.routes.draw do" > config/routes.rb
echo ' get "home/index"' >> config/routes.rb
echo ' get "other/index"' >> config/routes.rb
echo ' root to: "home#index"' >> config/routes.rb
echo 'end' >> config/routes.rb
mkdir app/views/home
echo '<h1>This is Rails Hotwire homepage</h1>' > app/views/home/index.html.erb
echo '<div><%= link_to "Enter to other page", other_index_path %></div>' >> app/views/home/index.html.erb
mkdir app/views/other
echo '<h1>This is Another page</h1>' > app/views/other/index.html.erb
echo '<div><%= link_to "Enter to home page", root_path %></div>' >> app/views/other/index.html.erb
bin/rails db:create
bin/rails db:migrate
Additionally, you can clone the code and browse through the project. Here’s the source code of the repository: Rails 7 Hotwire application
Now, let’s see how Hotwire Rails can work its magic with various Turbo techniques.
Go to your localhost:3000 on your web browser and right-click on the Inspect and open a Network tab of the DevTools of the browser.
Now click on go to another page link that appears on the home page to redirect from the home page to another page. In our Network tab, we can see that this action of navigation is achieved via XHR. It appears only the part inside HTML is reloaded, here neither the CSS is reloaded nor the JS is reloaded when the navigation action is performed.
By performing this action we can see that Turbo Drive helps to represent the HTML response without loading the full page and only follows redirect and reindeer HTML responses which helps to make the application faster to access.
This technique helps to divide the current page into different sections called frames that can be updated separately independently when new data is added from the server.
Below we discuss the different use cases of Turbo frame like inline edition, sorting, searching, and filtering of data.
Let’s perform some practical actions to see the example of these use cases.
Make changes in the app/controllers/home_controller.rb file
#CODE
class HomeController < ApplicationController
def turbo_frame_form
end
def turbo_frame submit
extracted_anynumber = params[:any][:anynumber]
render :turbo_frame_form, status: :ok, locals: {anynumber: extracted_anynumber, comment: 'turbo_frame_submit ok' }
end
end
Add app/views/home/turbo_frame_form.html.erb file to the application and add this content inside the file.
#CODE
<section>
<%= turbo_frame_tag 'anyframe' do %>
<div>
<h2>Frame view</h2>
<%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
<%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0 d-inline' %>
<%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}", 'aria-describedby' => 'anynumber' %>
<%= form.submit 'Submit this number', 'id' => 'submit-number' %>
<% end %>
</div>
<div>
<h2>Data of the view</h2>
<pre style="font-size: .7rem;"><%= JSON.pretty_generate(local_assigns) %></pre>
</div>
<% end %>
</section>
Make some adjustments in routes.rb
#CODE
Rails.application.routes.draw do
get 'home/index'
get 'other/index'
get '/home/turbo_frame_form' => 'home#turbo_frame_form', as: 'turbo_frame_form'
post '/home/turbo_frame_submit' => 'home#turbo_frame_submit', as: 'turbo_frame_submit'
root to: "home#index"
end
#CODE
<h1>This is Rails Hotwire home page</h1>
<div><%= link_to "Enter to other page", other_index_path %></div>
<%= turbo_frame_tag 'anyframe' do %>
<div>
<h2>Home view</h2>
<%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
<%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0 d-inline' %>
<%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}", 'aria-describedby' => 'anynumber' %>
<%= form.submit 'Submit this number', 'id' => 'submit-number' %>
<% end %>
<div>
<% end %>
After making all the changes, restart the rails server and refresh the browser, the default view will appear on the browser.
Now in the field enter any digit, after entering the digit click on submit button, and as the submit button is clicked we can see the Turbo Frame in action in the below screen, we can observe that the frame part changed, the first title and first link didn’t move.
Turbo Streams deliver page updates over WebSocket, SSE or in response to form submissions by only using HTML and a series of CRUD-like operations, you are free to say that either
This transmit can be represented by a simple example.
#CODE
class OtherController < ApplicationController
def post_something
respond_to do |format|
format.turbo_stream { }
end
end
end
Add the below line in routes.rb file of the application
#CODE
post '/other/post_something' => 'other#post_something', as: 'post_something'
Superb! Rails will now attempt to locate the app/views/other/post_something.turbo_stream.erb template at any moment the ‘/other/post_something’ endpoint is reached.
For this, we need to add app/views/other/post_something.turbo_stream.erb template in the rails application.
#CODE
<turbo-stream action="append" target="messages">
<template>
<div id="message_1">This changes the existing message!</div>
</template>
</turbo-stream>
This states that the response will try to append the template of the turbo frame with ID “messages”.
Now change the index.html.erb file in app/views/other paths with the below content.
#CODE
<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>
<div style="margin-top: 3rem;">
<%= form_with scope: :any, url: post_something_path do |form| %>
<%= form.submit 'Post any message %>
<% end %>
<turbo-frame id="messages">
<div>An empty message</div>
</turbo-frame>
</div>
This action shows that after submitting the response, the Turbo Streams help the developer to append the message, without reloading the page.
Another use case we can test is that rather than appending the message, the developer replaces the message. For that, we need to change the content of app/views/other/post_something.turbo_stream.erb template file and change the value of the action attribute from append to replace and check the changes in the browser.
#CODE
<turbo-stream action="replace" target="messages">
<template>
<div id="message_1">This changes the existing message!</div>
</template>
</turbo-stream>
When we click on Post any message button, the message that appear below that button will get replaced with the message that is mentioned in the app/views/other/post_something.turbo_stream.erb template
There are some cases in an application where JS is needed, therefore to cover those scenarios we require Hotwire JS tool. Hotwire has a JS tool because in some scenarios Turbo-* tools are not sufficient. But as we know that Hotwire is used to reduce the usage of JS in an application, Stimulus considers HTML as the single source of truth. Consider the case where we have to give elements on a page some JavaScript attributes, such as data controller, data-action, and data target. For that, a stimulus controller that can access elements and receive events based on those characteristics will be created.
Make a change in app/views/other/index.html.erb template file in rails application
#CODE
<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>
<div style="margin-top: 2rem;">
<%= form_with scope: :any, url: post_something_path do |form| %>
<%= form.submit 'Post something' %>
<% end %>
<turbo-frame id="messages">
<div>An empty message</div>
</turbo-frame>
</div>
<div style="margin-top: 2rem;">
<h2>Stimulus</h2>
<div data-controller="hello">
<input data-hello-target="name" type="text">
<button data-action="click->hello#greet">
Greet
</button>
<span data-hello-target="output">
</span>
</div>
</div>
Make changes in the hello_controller.js in path app/JavaScript/controllers and add a stimulus controller in the file, which helps to bring the HTML into life.
#CODE
import { Controller } from "@hotwired/stimulus"
export default class extends Controller {
static targets = [ "name", "output" ]
greet() {
this.outputTarget.textContent =
`Hello, ${this.nameTarget.value}!`
}
}
Go to your browser after making the changes in the code and click on Enter to other page link which will navigate to the localhost:3000/other/index page there you can see the changes implemented by the stimulus controller that is designed to augment your HTML with just enough behavior to make it more responsive.
With just a little bit of work, Turbo and Stimulus together offer a complete answer for applications that are quick and compelling.
Using Rails 7 Hotwire helps to load the pages at a faster speed and allows you to render templates on the server, where you have access to your whole domain model. It is a productive development experience in ROR, without compromising any of the speed or responsiveness associated with SPA.
We hope you were satisfied with our Rails Hotwire tutorial. Write to us at service@bacancy.com for any query that you want to resolve, or if you want us to share a tutorial on your query.
For more such solutions on RoR, check out our Ruby on Rails Tutorials. We will always strive to amaze you and cater to your needs.
Original article source at: https://www.bacancytechnology.com/
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1620729846
Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?
WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:
1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.
2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.
3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.
4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.
5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.
6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.
#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website
1604008800
Static code analysis refers to the technique of approximating the runtime behavior of a program. In other words, it is the process of predicting the output of a program without actually executing it.
Lately, however, the term “Static Code Analysis” is more commonly used to refer to one of the applications of this technique rather than the technique itself — program comprehension — understanding the program and detecting issues in it (anything from syntax errors to type mismatches, performance hogs likely bugs, security loopholes, etc.). This is the usage we’d be referring to throughout this post.
“The refinement of techniques for the prompt discovery of error serves as well as any other as a hallmark of what we mean by science.”
We cover a lot of ground in this post. The aim is to build an understanding of static code analysis and to equip you with the basic theory, and the right tools so that you can write analyzers on your own.
We start our journey with laying down the essential parts of the pipeline which a compiler follows to understand what a piece of code does. We learn where to tap points in this pipeline to plug in our analyzers and extract meaningful information. In the latter half, we get our feet wet, and write four such static analyzers, completely from scratch, in Python.
Note that although the ideas here are discussed in light of Python, static code analyzers across all programming languages are carved out along similar lines. We chose Python because of the availability of an easy to use ast
module, and wide adoption of the language itself.
Before a computer can finally “understand” and execute a piece of code, it goes through a series of complicated transformations:
As you can see in the diagram (go ahead, zoom it!), the static analyzers feed on the output of these stages. To be able to better understand the static analysis techniques, let’s look at each of these steps in some more detail:
The first thing that a compiler does when trying to understand a piece of code is to break it down into smaller chunks, also known as tokens. Tokens are akin to what words are in a language.
A token might consist of either a single character, like (
, or literals (like integers, strings, e.g., 7
, Bob
, etc.), or reserved keywords of that language (e.g, def
in Python). Characters which do not contribute towards the semantics of a program, like trailing whitespace, comments, etc. are often discarded by the scanner.
Python provides the tokenize
module in its standard library to let you play around with tokens:
Python
1
import io
2
import tokenize
3
4
code = b"color = input('Enter your favourite color: ')"
5
6
for token in tokenize.tokenize(io.BytesIO(code).readline):
7
print(token)
Python
1
TokenInfo(type=62 (ENCODING), string='utf-8')
2
TokenInfo(type=1 (NAME), string='color')
3
TokenInfo(type=54 (OP), string='=')
4
TokenInfo(type=1 (NAME), string='input')
5
TokenInfo(type=54 (OP), string='(')
6
TokenInfo(type=3 (STRING), string="'Enter your favourite color: '")
7
TokenInfo(type=54 (OP), string=')')
8
TokenInfo(type=4 (NEWLINE), string='')
9
TokenInfo(type=0 (ENDMARKER), string='')
(Note that for the sake of readability, I’ve omitted a few columns from the result above — metadata like starting index, ending index, a copy of the line on which a token occurs, etc.)
#code quality #code review #static analysis #static code analysis #code analysis #static analysis tools #code review tips #static code analyzer #static code analysis tool #static analyzer
1599633600
Are you an Arctic Code Vault Contributor or have seen someone posting about it and don’t know what it is. So let’s take a look at what is an Arctic Code Vault Contributor and who are the ones who gets this batch.
GitHub, the world’s largest open-source platform for software and programs has safely locked the data of huge value and magnitude in a coal mine in Longyearbyen’s Norwegian town in the Arctic region.
Back in November 2019, GitHub Arctic Code Vault was first announced.
The GitHub Arctic Code Vault is a data repository preserved in the Arctic
World Archive (AWA), a very-long-term archival facility 250 meters deep in the permafrost of an Arctic mountain. The archive is located in a decommissioned coal mine in the Svalbard archipelago, closer to the North Pole than the Arctic Circle.
Last year, GitHub said that it plans to capture a snapshot of every active
public repository on 02/02/2020 and preserve that data in the Arctic
Code Vault.
The project began on February 2, when the firm took a snapshot of all of
GitHub’s active public repositories to store them in the vault. They initially intended to travel to Norway and personally escort the world’s open-source technology to the Arctic but their plans were derailed by the global pandemic. Then, they had to wait until 8 Julyfor the Arctic Data Vault data to be deposited.
GitHub announced that the code was successfully deposited in the Arctic Code Vault on July 8, 2020. Over the past several months, GitHub worked
with its archive partners Piql to write the 21TB of GitHub repository data to 186 reels of piqlFilm (digital photosensitive archival film).
GitHub’s strategic software director, Julia Metcalf, has written a blog post
on the company’s website notifying the completion of GitHub’s Archive Program on July 8th. Discussing the objective of the Archive Program, Metcalf wrote “Our mission is to preserve open-source software for future generations by storing your code in an archive built to last a thousand years.”
The Arctic Code Vault is only a small part of the wider GitHub Archive
Program, however, which sees the company partner with the Long Now
Foundation, Internet Archive, Software Heritage Foundation, Microsoft
Research and others.
Svalbard has been regulated by the international Svalbard Treaty as a demilitarized zone. Home to the world’s northernmost town, it is one of the most remote and geopolitically stable human habitations on Earth.
The AWA is a joint initiative between Norwegian state-owned mining company Store Norske Spitsbergen Kulkompani (SNSK) and very-long-term digital preservation provider Piql AS. AWA is devoted to archival storage in perpetuity. The film reels will be stored in a steel-walled container inside a sealed chamber within a decommissioned coal mine on the remote archipelago of Svalbard. The AWA already preserves historical and cultural data from Italy, Brazil, Norway, the Vatican, and many others.
The 02/02/2020 snapshot archived in the GitHub Arctic Code Vault will
sweep up every active public GitHub repository, in addition to significant dormant repos.
The snapshot will include every repo with any commits between the announcement at GitHub Universe on November 13th and 02/02/2020,
every repo with at least 1 star and any commits from the year before the snapshot (02/03/2019 – 02/02/2020), and every repo with at least 250 stars.
The snapshot will consist of the HEAD of the default branch of each repository, minus any binaries larger than 100KB in size—depending on available space, repos with more stars may retain binaries. Each repository will be packaged as a single TAR file. For greater data density and integrity, most of the data will be stored QR-encoded and compressed. A human-readable index and guide will itemize the location of each repository and explain how to recover the data.
The company further shared that every reel of the archive includes a copy
of the “Guide to the GitHub Code Vault” in five languages, written with input from GitHub’s community and available at the Archive Program’s own GitHub repository.
#github #open-source #coding #open-source-contribution #contributing-to-open-source #github-arctic-code-vault #arctic-code-vault #arctic-code-vault-contributor