1602697800
Hey Guys, Today is day 33 of the challenge that I took. Wherein I will be solving every day for 100 days the programming questions that have been asked in previous interviews.
You have a bonus at the end if you keep reading. You can find out the companies that have asked these questions in real interviews.
All these problems are taken from the following e-book. 🎓
This is completely free 🆓 if you have an amazon kindle subscription.
This e-book contains 100 coding problems that have been asked in top tech interview questions. It also has a guide to solving all the problems in 200+ ways. These problems I assure you has been asked in previous interviews.
You have to decide whether you want to go** unprepared **for a tech interview or go ahead and **quick search for this guide **to solve the data structure and algorithms problems.
Note :_ this e-book only contains the __links _to the__solutions.
Given a 2d grid map of '1'
s (land) and '0'
s (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
#interview #coding #programming #software-development #java
1646753760
A new Cumulus-based Substrate node, ready for hacking :cloud:
This project is a fork of the Substrate Node Template modified to include dependencies required for registering this node as a parathread or parachain to an established relay chain.
👉 Learn more about parachains here, and parathreads here.
Follow these steps to prepare a local Substrate development environment :hammer_and_wrench:
If necessary, refer to the setup instructions at the Substrate Developer Hub.
Once the development environment is set up, build the Cumulus Parachain Template. This command will build the Wasm Runtime and native code:
cargo build --release
NOTE: In the following two sections, we document how to manually start a few relay chain nodes, start a parachain node (collator), and register the parachain with the relay chain.
We also have the
polkadot-launch
CLI tool that automate the following steps and help you easily launch relay chains and parachains. However it is still good to go through the following procedures once to understand the mechanism for running and registering a parachain.
To operate a parathread or parachain, you must connect to a relay chain. Typically you would test on a local Rococo development network, then move to the testnet, and finally launch on the mainnet. Keep in mind you need to configure the specific relay chain you will connect to in your collator chain_spec.rs
. In the following examples, we will use rococo-local
as the relay network.
Clone and build Polkadot (beware of the version tag we used):
# Get a fresh clone, or `cd` to where you have polkadot already:
git clone -b v0.9.7 --depth 1 https://github.com/paritytech/polkadot.git
cd polkadot
cargo build --release
First, we create the chain specification file (chainspec). Note the chainspec file must be generated on a single node and then shared among all nodes!
👉 Learn more about chain specification here.
./target/release/polkadot build-spec \
--chain rococo-local \
--raw \
--disable-default-bootnode \
> rococo_local.json
We need n + 1 full validator nodes running on a relay chain to accept n parachain / parathread connections. Here we will start two relay chain nodes so we can have one parachain node connecting in later.
From the Polkadot working directory:
# Start Relay `Alice` node
./target/release/polkadot \
--chain ./rococo_local.json \
-d /tmp/relay/alice \
--validator \
--alice \
--port 50555
Open a new terminal, same directory:
# Start Relay `Bob` node
./target/release/polkadot \
--chain ./rococo_local.json \
-d /tmp/relay/bob \
--validator \
--bob \
--port 50556
Add more nodes as needed, with non-conflicting ports, DB directories, and validator keys (--charlie
, --dave
, etc.).
To connect to a relay chain, you must first _reserve a ParaId
for your parathread that will become a parachain. To do this, you will need sufficient amount of currency on the network account to reserve the ID.
In this example, we will use Charlie
development account where we have funds available. Once you submit this extrinsic successfully, you can start your collators.
The easiest way to reserve your ParaId
is via Polkadot Apps UI under the Parachains
-> Parathreads
tab and use the + ParaID
button.
To operate your parachain, you need to specify the correct relay chain you will connect to in your collator chain_spec.rs
. Specifically you pass the command for the network you need in the Extensions
of your ChainSpec::from_genesis()
in the code.
Extensions {
relay_chain: "rococo-local".into(), // You MUST set this to the correct network!
para_id: id.into(),
},
You can choose from any pre-set runtime chainspec in the Polkadot repo, by referring to the
cli/src/command.rs
andnode/service/src/chain_spec.rs
files or generate your own and use that. See the Cumulus Workshop for how.
In the following examples, we will use the rococo-local
relay network we setup in the last section.
We first generate the genesis state and genesis wasm needed for the parachain registration.
# Build the parachain node (from it's top level dir)
cd substrate-parachain-template
cargo build --release
# Folder to store resource files needed for parachain registration
mkdir -p resources
# Build the chainspec
./target/release/parachain-collator build-spec \
--disable-default-bootnode > ./resources/template-local-plain.json
# Build the raw chainspec file
./target/release/parachain-collator build-spec \
--chain=./resources/template-local-plain.json \
--raw --disable-default-bootnode > ./resources/template-local-raw.json
# Export genesis state to `./resources`, using 2000 as the ParaId
./target/release/parachain-collator export-genesis-state --parachain-id 2000 > ./resources/para-2000-genesis
# Export the genesis wasm
./target/release/parachain-collator export-genesis-wasm > ./resources/para-2000-wasm
NOTE: we have set the
para_ID
to be 2000 here. This must be unique for all parathreads/chains on the relay chain you register with. You must reserve this first on the relay chain for the testnet or mainnet.
From the parachain template working directory:
# NOTE: this command assumes the chain spec is in a directory named `polkadot`
# that is at the same level of the template working directory. Change as needed.
#
# It also assumes a ParaId of 2000. Change as needed.
./target/release/parachain-collator \
-d /tmp/parachain/alice \
--collator \
--alice \
--force-authoring \
--ws-port 9945 \
--parachain-id 2000 \
-- \
--execution wasm \
--chain ../polkadot/rococo_local.json
Output:
2021-05-30 16:57:39 Parachain Collator Template
2021-05-30 16:57:39 ✌️ version 3.0.0-acce183-x86_64-linux-gnu
2021-05-30 16:57:39 ❤️ by Anonymous, 2017-2021
2021-05-30 16:57:39 📋 Chain specification: Local Testnet
2021-05-30 16:57:39 🏷 Node name: Alice
2021-05-30 16:57:39 👤 Role: AUTHORITY
2021-05-30 16:57:39 💾 Database: RocksDb at /tmp/parachain/alice/chains/local_testnet/db
2021-05-30 16:57:39 ⛓ Native runtime: template-parachain-1 (template-parachain-0.tx1.au1)
2021-05-30 16:57:41 Parachain id: Id(2000)
2021-05-30 16:57:41 Parachain Account: 5Ec4AhPUwPeyTFyuhGuBbD224mY85LKLMSqSSo33JYWCazU4
2021-05-30 16:57:41 Parachain genesis state: 0x0000000000000000000000000000000000000000000000000000000000000000000a96f42b5cb798190e5f679bb16970905087a9a9fc612fb5ca6b982b85783c0d03170a2e7597b7b7e3d84c05391d139a62b157e78786d8c082f29dcf4c11131400
2021-05-30 16:57:41 Is collating: yes
2021-05-30 16:57:41 [Parachain] 🔨 Initializing Genesis block/state (state: 0x0a96…3c0d, header-hash: 0xd42b…f271)
2021-05-30 16:57:41 [Parachain] ⏱ Loaded block-time = 12s from block 0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 16:57:43 [Relaychain] 🔨 Initializing Genesis block/state (state: 0xace1…1b62, header-hash: 0xfa68…cf58)
2021-05-30 16:57:43 [Relaychain] 👴 Loading GRANDPA authority set from genesis on what appears to be first startup.
2021-05-30 16:57:44 [Relaychain] ⏱ Loaded block-time = 6s from block 0xfa68f5abd2a80394b87c9bd07e0f4eee781b8c696d0a22c8e5ba38ae10e1cf58
2021-05-30 16:57:44 [Relaychain] 👶 Creating empty BABE epoch changes on what appears to be first startup.
2021-05-30 16:57:44 [Relaychain] 🏷 Local node identity is: 12D3KooWBjYK2W4dsBfsrFA9tZCStb5ogPb6STQqi2AK9awXfXyG
2021-05-30 16:57:44 [Relaychain] 📦 Highest known block at #0
2021-05-30 16:57:44 [Relaychain] 〽️ Prometheus server started at 127.0.0.1:9616
2021-05-30 16:57:44 [Relaychain] Listening for new connections on 127.0.0.1:9945.
2021-05-30 16:57:44 [Parachain] Using default protocol ID "sup" because none is configured in the chain specs
2021-05-30 16:57:44 [Parachain] 🏷 Local node identity is: 12D3KooWADBSC58of6ng2M29YTDkmWCGehHoUZhsy9LGkHgYscBw
2021-05-30 16:57:44 [Parachain] 📦 Highest known block at #0
2021-05-30 16:57:44 [Parachain] Unable to listen on 127.0.0.1:9945
2021-05-30 16:57:44 [Parachain] Unable to bind RPC server to 127.0.0.1:9945. Trying random port.
2021-05-30 16:57:44 [Parachain] Listening for new connections on 127.0.0.1:45141.
2021-05-30 16:57:45 [Relaychain] 🔍 Discovered new external address for our node: /ip4/192.168.42.204/tcp/30334/ws/p2p/12D3KooWBjYK2W4dsBfsrFA9tZCStb5ogPb6STQqi2AK9awXfXyG
2021-05-30 16:57:45 [Parachain] 🔍 Discovered new external address for our node: /ip4/192.168.42.204/tcp/30333/p2p/12D3KooWADBSC58of6ng2M29YTDkmWCGehHoUZhsy9LGkHgYscBw
2021-05-30 16:57:48 [Relaychain] ✨ Imported #8 (0xe60b…9b0a)
2021-05-30 16:57:49 [Relaychain] 💤 Idle (2 peers), best: #8 (0xe60b…9b0a), finalized #5 (0x1e6f…567c), ⬇ 4.5kiB/s ⬆ 2.2kiB/s
2021-05-30 16:57:49 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 2.0kiB/s ⬆ 1.7kiB/s
2021-05-30 16:57:54 [Relaychain] ✨ Imported #9 (0x1af9…c9be)
2021-05-30 16:57:54 [Relaychain] ✨ Imported #9 (0x6ed8…fdf6)
2021-05-30 16:57:54 [Relaychain] 💤 Idle (2 peers), best: #9 (0x1af9…c9be), finalized #6 (0x3319…69a2), ⬇ 1.8kiB/s ⬆ 0.5kiB/s
2021-05-30 16:57:54 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0.2kiB/s ⬆ 0.2kiB/s
2021-05-30 16:57:59 [Relaychain] 💤 Idle (2 peers), best: #9 (0x1af9…c9be), finalized #7 (0x5b50…1e5b), ⬇ 0.6kiB/s ⬆ 0.4kiB/s
2021-05-30 16:57:59 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 16:58:00 [Relaychain] ✨ Imported #10 (0xc9c9…1ca3)
You see messages are from both a relaychain node and a parachain node. This is because a relay chain light client is also run next to the parachain collator.
Now that you have two relay chain nodes, and a parachain node accompanied with a relay chain light client running, the next step is to register the parachain in the relay chain with the following steps (for detail, refer to the Substrate Cumulus Worship):
Developer
-> sudo
page.paraSudoWrapper
-> sudoScheduleParaInitialize(id, genesis)
as the extrinsic type, shown below.id: ParaId
to 2,000 (or whatever ParaId you used above), and set the parachain: Bool
option to Yes.genesisHead
, drag the genesis state file exported above, para-2000-genesis
, in.validationCode
, drag the genesis wasm file exported above, para-2000-wasm
, in.Note: When registering to the public Rococo testnet, ensure you set a unique
paraId
larger than 1,000. Values below 1,000 are reserved exclusively for system parachains.
The collator node may need to be restarted to get it functioning as expected. After a new epoch starts on the relay chain, your parachain will come online. Once this happens, you should see the collator start reporting parachain blocks:
# Notice the relay epoch change! Only then do we start parachain collating!
#
2021-05-30 17:00:04 [Relaychain] 💤 Idle (2 peers), best: #30 (0xfc02…2a2a), finalized #28 (0x10ff…6539), ⬇ 1.0kiB/s ⬆ 0.3kiB/s
2021-05-30 17:00:04 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:06 [Relaychain] 👶 New epoch 3 launching at block 0x68bc…0605 (block slot 270402601 >= start slot 270402601).
2021-05-30 17:00:06 [Relaychain] 👶 Next epoch starts at slot 270402611
2021-05-30 17:00:06 [Relaychain] ✨ Imported #31 (0x68bc…0605)
2021-05-30 17:00:06 [Parachain] Starting collation. relay_parent=0x68bcc93d24a31a2c89800a56c7a2b275fe9ca7bd63f829b64588ae0d99280605 at=0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 17:00:06 [Parachain] 🙌 Starting consensus session on top of parent 0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 17:00:06 [Parachain] 🎁 Prepared block for proposing at 1 [hash: 0xf6507812bf60bf53af1311f775aac03869be870df6b0406b2969784d0935cb92; parent_hash: 0xd42b…f271; extrinsics (2): [0x1bf5…1d76, 0x7c9b…4e23]]
2021-05-30 17:00:06 [Parachain] 🔖 Pre-sealed block for proposal at 1. Hash now 0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae, previously 0xf6507812bf60bf53af1311f775aac03869be870df6b0406b2969784d0935cb92.
2021-05-30 17:00:06 [Parachain] ✨ Imported #1 (0x80fc…ccae)
2021-05-30 17:00:06 [Parachain] Produced proof-of-validity candidate. block_hash=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:09 [Relaychain] 💤 Idle (2 peers), best: #31 (0x68bc…0605), finalized #29 (0xa6fa…9e16), ⬇ 1.2kiB/s ⬆ 129.9kiB/s
2021-05-30 17:00:09 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:12 [Relaychain] ✨ Imported #32 (0x5e92…ba30)
2021-05-30 17:00:12 [Relaychain] Moving approval window from session 0..=2 to 0..=3
2021-05-30 17:00:12 [Relaychain] ✨ Imported #32 (0x8144…74eb)
2021-05-30 17:00:14 [Relaychain] 💤 Idle (2 peers), best: #32 (0x5e92…ba30), finalized #29 (0xa6fa…9e16), ⬇ 1.4kiB/s ⬆ 0.2kiB/s
2021-05-30 17:00:14 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:18 [Relaychain] ✨ Imported #33 (0x8c30…9ccd)
2021-05-30 17:00:18 [Parachain] Starting collation. relay_parent=0x8c30ce9e6e9867824eb2aff40148ac1ed64cf464f51c5f2574013b44b20f9ccd at=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:19 [Relaychain] 💤 Idle (2 peers), best: #33 (0x8c30…9ccd), finalized #30 (0xfc02…2a2a), ⬇ 0.7kiB/s ⬆ 0.4kiB/s
2021-05-30 17:00:19 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:22 [Relaychain] 👴 Applying authority set change scheduled at block #31
2021-05-30 17:00:22 [Relaychain] 👴 Applying GRANDPA set change to new set [(Public(88dc3417d5058ec4b4503e0c12ea1a0a89be200fe98922423d4334014fa6b0ee (5FA9nQDV...)), 1), (Public(d17c2d7823ebf260fd138f2d7e27d114c0145d968b5ff5006125f2414fadae69 (5GoNkf6W...)), 1)]
2021-05-30 17:00:22 [Relaychain] 👴 Imported justification for block #31 that triggers command Changing authorities, signaling voter.
2021-05-30 17:00:24 [Relaychain] ✨ Imported #34 (0x211b…febf)
2021-05-30 17:00:24 [Parachain] Starting collation. relay_parent=0x211b3c53bebeff8af05e8f283d59fe171b7f91a5bf9c4669d88943f5a42bfebf at=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:24 [Parachain] 🙌 Starting consensus session on top of parent 0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:24 [Parachain] 🎁 Prepared block for proposing at 2 [hash: 0x10fcb3180e966729c842d1b0c4d8d2c4028cfa8bef02b909af5ef787e6a6a694; parent_hash: 0x80fc…ccae; extrinsics (2): [0x4a6c…1fc6, 0x6b84…7cea]]
2021-05-30 17:00:24 [Parachain] 🔖 Pre-sealed block for proposal at 2. Hash now 0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0, previously 0x10fcb3180e966729c842d1b0c4d8d2c4028cfa8bef02b909af5ef787e6a6a694.
2021-05-30 17:00:24 [Parachain] ✨ Imported #2 (0x5087…b5a0)
2021-05-30 17:00:24 [Parachain] Produced proof-of-validity candidate. block_hash=0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0
2021-05-30 17:00:24 [Relaychain] 💤 Idle (2 peers), best: #34 (0x211b…febf), finalized #31 (0x68bc…0605), ⬇ 1.0kiB/s ⬆ 130.1kiB/s
2021-05-30 17:00:24 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:29 [Relaychain] 💤 Idle (2 peers), best: #34 (0x211b…febf), finalized #32 (0x5e92…ba30), ⬇ 0.2kiB/s ⬆ 0.1kiB/s
2021-05-30 17:00:29 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:30 [Relaychain] ✨ Imported #35 (0xee07…38a0)
2021-05-30 17:00:34 [Relaychain] 💤 Idle (2 peers), best: #35 (0xee07…38a0), finalized #33 (0x8c30…9ccd), ⬇ 0.9kiB/s ⬆ 0.3kiB/s
2021-05-30 17:00:34 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #1 (0x80fc…ccae), ⬇ 0 ⬆ 0
2021-05-30 17:00:36 [Relaychain] ✨ Imported #36 (0xe8ce…4af6)
2021-05-30 17:00:36 [Parachain] Starting collation. relay_parent=0xe8cec8015c0c7bf508bf3f2f82b1696e9cca078e814b0f6671f0b0d5dfe84af6 at=0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0
2021-05-30 17:00:39 [Relaychain] 💤 Idle (2 peers), best: #36 (0xe8ce…4af6), finalized #33 (0x8c30…9ccd), ⬇ 0.6kiB/s ⬆ 0.1kiB/s
2021-05-30 17:00:39 [Parachain] 💤 Idle (0 peers), best: #2 (0x5087…b5a0), finalized #1 (0x80fc…ccae), ⬇ 0 ⬆ 0
Note the delay here! It may take some time for your relay chain to enter a new epoch.
Is this Cumulus Parachain Template Rococo & Westend testnets compatible? Yes!
See the Cumulus Workshop for the latest instructions to register a parathread/parachain on a relay chain.
NOTE: When running the relay chain and parachain, you must use the same tagged version of Polkadot and Cumulus so the collator would register successfully to the relay chain. You should test locally registering your parachain successfully before attempting to connect to any running relay chain network!
Find chainspec
files to connect to live networks here. You want to be sure to use the correct git release tag in these files, as they change from time to time and must match the live network!
These networks are under constant development - so please follow the progress and update of your parachains in lock step with the testnet changes if you wish to connect to the network. Do join the Parachain Technical matrix chat room to ask questions and connect with the parachain building teams.
Download Details:
Author: aresprotocols
Source Code: https://github.com/aresprotocols/substrate-parachain-template
License: Unlicense License
1651778580
cargo build
./target/debug/node-template --dev --tmp
./target/debug/node-template build-spec
Install nix and optionally direnv and lorri for a fully plug and play experience for setting up the development environment. To get all the correct dependencies activate direnv direnv allow
and lorri lorri shell
.
First, complete the basic Rust setup instructions.
Use Rust's native cargo
command to build and launch the template node:
cargo run --release -- --dev --tmp
The cargo run
command will perform an initial build. Use the following command to build the node without launching it:
cargo build --release
NOTE: You must use the release builds for parachains! The optimizations here are required as in debug mode, it is expected that nodes are not able to run fast enough to produce blocks.
NOTE: In the following two sections, we document how to manually start a few relay chain nodes, start a parachain node (collator), and register the parachain with the relay chain.
We also have the
polkadot-launch
CLI tool that automate the following steps and help you easily launch relay chains and parachains. However it is still good to go through the following procedures once to understand the mechanism for running and registering a parachain.
Once the project has been built, the following command can be used to explore all parameters and subcommands:
./target/release/node-template -h
The provided cargo run
command will launch a temporary node and its state will be discarded after you terminate the process. After the project has been built, there are other ways to launch the node.
This command will start the single-node development chain with persistent state:
./target/release/node-template --dev
We need n + 1 full validator nodes running on a relay chain to accept n parachain / parathread connections. Here we will start two relay chain nodes so we can have one parachain node connecting in later.
From the Polkadot working directory:
./target/release/node-template purge-chain --dev
Start the development chain with detailed logging:
RUST_LOG=debug RUST_BACKTRACE=1 ./target/release/node-template -lruntime=debug --dev
To connect to a relay chain, you must first _reserve a ParaId
for your parathread that will become a parachain. To do this, you will need sufficient amount of currency on the network account to reserve the ID.
If you want to see the multi-node consensus algorithm in action, refer to our Start a Private Network tutorial.
A Substrate project such as this consists of a number of components that are spread across a few directories.
A blockchain node is an application that allows users to participate in a blockchain network. Substrate-based blockchain nodes expose a number of capabilities:
libp2p
networking stack to allow the nodes in the network to communicate with one another.There are several files in the node
directory - take special note of the following:
chain_spec.rs
: A chain specification is a source code file that defines a Substrate chain's initial (genesis) state. Chain specifications are useful for development and testing, and critical when architecting the launch of a production chain. Take note of the development_config
and testnet_genesis
functions, which are used to define the genesis state for the local development chain configuration. These functions identify some well-known accounts and use them to configure the blockchain's initial state.service.rs
: This file defines the node implementation. Take note of the libraries that this file imports and the names of the functions it invokes. In particular, there are references to consensus-related topics, such as the longest chain rule, the Aura block authoring mechanism and the GRANDPA finality gadget.After the node has been built, refer to the embedded documentation to learn more about the capabilities and configuration parameters that it exposes:
./target/release/node-template --help
In Substrate, the terms "runtime" and "state transition function" are analogous - they refer to the core logic of the blockchain that is responsible for validating blocks and executing the state changes they define. The Substrate project in this repository uses the FRAME framework to construct a blockchain runtime. FRAME allows runtime developers to declare domain-specific logic in modules called "pallets". At the heart of FRAME is a helpful macro language that makes it easy to create pallets and flexibly compose them to create blockchains that can address a variety of needs.
Review the FRAME runtime implementation included in this template and note the following:
impl $PALLET_NAME::Config for Runtime
.construct_runtime!
macro, which is part of the core FRAME Support library.The runtime in this project is constructed using many FRAME pallets that ship with the core Substrate repository and a template pallet that is defined in the pallets
directory.
A FRAME pallet is compromised of a number of blockchain primitives:
Config
configuration interface is used to define the types and parameters upon which a FRAME pallet depends.First, install Docker and Docker Compose.
Then run the following command to start a single node development chain.
./scripts/docker_run.sh
This command will firstly compile your code, and then start a local development network. You can also replace the default command (cargo build --release && ./target/release/node-template --dev --ws-external
) by appending your own. A few useful ones are as follow.
# Run Substrate node without re-compiling
./scripts/docker_run.sh ./target/release/node-template --dev --ws-external
# Purge the local dev chain
./scripts/docker_run.sh ./target/release/node-template purge-chain --dev
Now that you have two relay chain nodes, and a parachain node accompanied with a relay chain light
client running, the next step is to register the parachain in the relay chain with the following
steps (for detail, refer to the [Substrate Cumulus Worship](https://substrate.dev/cumulus-workshop/#/en/3-parachains/2-register)):
- Goto [Polkadot Apps UI](https://polkadot.js.org/apps/#/explorer), connecting to your relay chain.
- Execute a sudo extrinsic on the relay chain by going to `Developer` -> `sudo` page.
- Pick `paraSudoWrapper` -> `sudoScheduleParaInitialize(id, genesis)` as the extrinsic type,
shown below.

- Set the `id: ParaId` to 2,000 (or whatever ParaId you used above), and set the `parachain: Bool`
option to **Yes**.
- For the `genesisHead`, drag the genesis state file exported above, `para-2000-genesis`, in.
- For the `validationCode`, drag the genesis wasm file exported above, `para-2000-wasm`, in.
> **Note**: When registering to the public Rococo testnet, ensure you set a **unique** `paraId`
> larger than 1,000. Values below 1,000 are reserved _exclusively_ for system parachains.
### Restart the Parachain (Collator)
The collator node may need to be restarted to get it functioning as expected. After a
[new epoch](https://wiki.polkadot.network/docs/en/glossary#epoch) starts on the relay chain,
your parachain will come online. Once this happens, you should see the collator start
reporting _parachain_ blocks:
```bash
# Notice the relay epoch change! Only then do we start parachain collating!
#
2021-05-30 17:00:04 [Relaychain] 💤 Idle (2 peers), best: #30 (0xfc02…2a2a), finalized #28 (0x10ff…6539), ⬇ 1.0kiB/s ⬆ 0.3kiB/s
2021-05-30 17:00:04 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:06 [Relaychain] 👶 New epoch 3 launching at block 0x68bc…0605 (block slot 270402601 >= start slot 270402601).
2021-05-30 17:00:06 [Relaychain] 👶 Next epoch starts at slot 270402611
2021-05-30 17:00:06 [Relaychain] ✨ Imported #31 (0x68bc…0605)
2021-05-30 17:00:06 [Parachain] Starting collation. relay_parent=0x68bcc93d24a31a2c89800a56c7a2b275fe9ca7bd63f829b64588ae0d99280605 at=0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 17:00:06 [Parachain] 🙌 Starting consensus session on top of parent 0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 17:00:06 [Parachain] 🎁 Prepared block for proposing at 1 [hash: 0xf6507812bf60bf53af1311f775aac03869be870df6b0406b2969784d0935cb92; parent_hash: 0xd42b…f271; extrinsics (2): [0x1bf5…1d76, 0x7c9b…4e23]]
2021-05-30 17:00:06 [Parachain] 🔖 Pre-sealed block for proposal at 1. Hash now 0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae, previously 0xf6507812bf60bf53af1311f775aac03869be870df6b0406b2969784d0935cb92.
2021-05-30 17:00:06 [Parachain] ✨ Imported #1 (0x80fc…ccae)
2021-05-30 17:00:06 [Parachain] Produced proof-of-validity candidate. block_hash=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:09 [Relaychain] 💤 Idle (2 peers), best: #31 (0x68bc…0605), finalized #29 (0xa6fa…9e16), ⬇ 1.2kiB/s ⬆ 129.9kiB/s
2021-05-30 17:00:09 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:12 [Relaychain] ✨ Imported #32 (0x5e92…ba30)
2021-05-30 17:00:12 [Relaychain] Moving approval window from session 0..=2 to 0..=3
2021-05-30 17:00:12 [Relaychain] ✨ Imported #32 (0x8144…74eb)
2021-05-30 17:00:14 [Relaychain] 💤 Idle (2 peers), best: #32 (0x5e92…ba30), finalized #29 (0xa6fa…9e16), ⬇ 1.4kiB/s ⬆ 0.2kiB/s
2021-05-30 17:00:14 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:18 [Relaychain] ✨ Imported #33 (0x8c30…9ccd)
2021-05-30 17:00:18 [Parachain] Starting collation. relay_parent=0x8c30ce9e6e9867824eb2aff40148ac1ed64cf464f51c5f2574013b44b20f9ccd at=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:19 [Relaychain] 💤 Idle (2 peers), best: #33 (0x8c30…9ccd), finalized #30 (0xfc02…2a2a), ⬇ 0.7kiB/s ⬆ 0.4kiB/s
2021-05-30 17:00:19 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:22 [Relaychain] 👴 Applying authority set change scheduled at block #31
2021-05-30 17:00:22 [Relaychain] 👴 Applying GRANDPA set change to new set [(Public(88dc3417d5058ec4b4503e0c12ea1a0a89be200fe98922423d4334014fa6b0ee (5FA9nQDV...)), 1), (Public(d17c2d7823ebf260fd138f2d7e27d114c0145d968b5ff5006125f2414fadae69 (5GoNkf6W...)), 1)]
2021-05-30 17:00:22 [Relaychain] 👴 Imported justification for block #31 that triggers command Changing authorities, signaling voter.
2021-05-30 17:00:24 [Relaychain] ✨ Imported #34 (0x211b…febf)
2021-05-30 17:00:24 [Parachain] Starting collation. relay_parent=0x211b3c53bebeff8af05e8f283d59fe171b7f91a5bf9c4669d88943f5a42bfebf at=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:24 [Parachain] 🙌 Starting consensus session on top of parent 0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:24 [Parachain] 🎁 Prepared block for proposing at 2 [hash: 0x10fcb3180e966729c842d1b0c4d8d2c4028cfa8bef02b909af5ef787e6a6a694; parent_hash: 0x80fc…ccae; extrinsics (2): [0x4a6c…1fc6, 0x6b84…7cea]]
2021-05-30 17:00:24 [Parachain] 🔖 Pre-sealed block for proposal at 2. Hash now 0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0, previously 0x10fcb3180e966729c842d1b0c4d8d2c4028cfa8bef02b909af5ef787e6a6a694.
2021-05-30 17:00:24 [Parachain] ✨ Imported #2 (0x5087…b5a0)
2021-05-30 17:00:24 [Parachain] Produced proof-of-validity candidate. block_hash=0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0
2021-05-30 17:00:24 [Relaychain] 💤 Idle (2 peers), best: #34 (0x211b…febf), finalized #31 (0x68bc…0605), ⬇ 1.0kiB/s ⬆ 130.1kiB/s
2021-05-30 17:00:24 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:29 [Relaychain] 💤 Idle (2 peers), best: #34 (0x211b…febf), finalized #32 (0x5e92…ba30), ⬇ 0.2kiB/s ⬆ 0.1kiB/s
2021-05-30 17:00:29 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:30 [Relaychain] ✨ Imported #35 (0xee07…38a0)
2021-05-30 17:00:34 [Relaychain] 💤 Idle (2 peers), best: #35 (0xee07…38a0), finalized #33 (0x8c30…9ccd), ⬇ 0.9kiB/s ⬆ 0.3kiB/s
2021-05-30 17:00:34 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #1 (0x80fc…ccae), ⬇ 0 ⬆ 0
2021-05-30 17:00:36 [Relaychain] ✨ Imported #36 (0xe8ce…4af6)
2021-05-30 17:00:36 [Parachain] Starting collation. relay_parent=0xe8cec8015c0c7bf508bf3f2f82b1696e9cca078e814b0f6671f0b0d5dfe84af6 at=0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0
2021-05-30 17:00:39 [Relaychain] 💤 Idle (2 peers), best: #36 (0xe8ce…4af6), finalized #33 (0x8c30…9ccd), ⬇ 0.6kiB/s ⬆ 0.1kiB/s
2021-05-30 17:00:39 [Parachain] 💤 Idle (0 peers), best: #2 (0x5087…b5a0), finalized #1 (0x80fc…ccae), ⬇ 0 ⬆ 0
Note the delay here! It may take some time for your relay chain to enter a new epoch.
Is this Cumulus Parachain Template Rococo & Westend testnets compatible? Yes!
See the Cumulus Workshop for the latest instructions to register a parathread/parachain on a relay chain.
NOTE: When running the relay chain and parachain, you must use the same tagged version of Polkadot and Cumulus so the collator would register successfully to the relay chain. You should test locally registering your parachain successfully before attempting to connect to any running relay chain network!
Find chainspec
files to connect to live networks here. You want to be sure to use the correct git release tag in these files, as they change from time to time and must match the live network!
These networks are under constant development - so please follow the progress and update of your parachains in lock step with the testnet changes if you wish to connect to the network. Do join the Parachain Technical matrix chat room to ask questions and connect with the parachain building teams.
Download Details:
Author: paritytech
Source Code: https://github.com/paritytech/adz
License: Unlicense License
1620418260
Introduction
A number is said to be the perfect number if the sum of its proper divisors (not including the number itself) is equal to the number.
To get a better idea let’s consider an example, proper divisors of 6 are 1, 2, 3. Now the sum of these divisors is equal to 6 (1+2+3=6), so 6 is said to be a perfect number. Whereas if we consider another number like 12, proper divisors of 12 are 1, 2, 3, 4, 6. Now the sum of these divisors is not equal to 12, so 12 is not a perfect number.
Programming in Python is relatively simpler and more fun when compared to other languages because of its simpler syntax, good readability. Now that we are clear with the concept of perfect number let’s write a python program to check if a number is a perfect number or not. Let’s build a python code for checking if the given user input is a perfect number or not and explore the fun in coding with python.
#data science #how to check if a number is perfect #perfect number #perfect number in python #perfect number program in python #python
1619607900
Introduction
A number is said to be the perfect number if the sum of its proper divisors (not including the number itself) is equal to the number.
To get a better idea let’s consider an example, proper divisors of 6 are 1, 2, 3. Now the sum of these divisors is equal to 6 (1+2+3=6), so 6 is said to be a perfect number. Whereas if we consider another number like 12, proper divisors of 12 are 1, 2, 3, 4, 6. Now the sum of these divisors is not equal to 12, so 12 is not a perfect number.
Programming in Python is relatively simpler and more fun when compared to other languages because of its simpler syntax, good readability. Now that we are clear with the concept of perfect number let’s write a python program to check if a number is a perfect number or not. Let’s build a python code for checking if the given user input is a perfect number or not and explore the fun in coding with python.
#data science #how to check if a number is perfect #perfect number #perfect number in python #perfect number program in python #python
1676389586
Python client for FCM - Firebase Cloud Messaging (Android, iOS and Web)
Firebase Cloud Messaging (FCM) is the new version of GCM. It inherits the reliable and scalable GCM infrastructure, plus new features. GCM users are strongly recommended to upgrade to FCM.
Using FCM, you can notify a client app that new email or other data is available to sync. You can send notifications to drive user reengagement and retention. For use cases such as instant messaging, a message can transfer a payload of up to 4KB to a client app.
Install using pip:
pip install pyfcm
OR
pip install git+https://github.com/olucurious/PyFCM.git
PyFCM supports Android, iOS and Web.
Send notifications using the FCMNotification
class:
# Send to single device.
from pyfcm import FCMNotification
push_service = FCMNotification(api_key="<api-key>")
# OR initialize with proxies
proxy_dict = {
"http" : "http://127.0.0.1",
"https" : "http://127.0.0.1",
}
push_service = FCMNotification(api_key="<api-key>", proxy_dict=proxy_dict)
# Your api-key can be gotten from: https://console.firebase.google.com/project/<project-name>/settings/cloudmessaging
registration_id = "<device registration_id>"
message_title = "Uber update"
message_body = "Hi john, your customized news for today is ready"
result = push_service.notify_single_device(registration_id=registration_id, message_title=message_title, message_body=message_body)
# Send to multiple devices by passing a list of ids.
registration_ids = ["<device registration_id 1>", "<device registration_id 2>", ...]
message_title = "Uber update"
message_body = "Hope you're having fun this weekend, don't forget to check today's news"
result = push_service.notify_multiple_devices(registration_ids=registration_ids, message_title=message_title, message_body=message_body)
print result
Send a data message.
# With FCM, you can send two types of messages to clients:
# 1. Notification messages, sometimes thought of as "display messages."
# 2. Data messages, which are handled by the client app.
# 3. Notification messages with optional data payload.
# Client app is responsible for processing data messages. Data messages have only custom key-value pairs. (Python dict)
# Data messages let developers send up to 4KB of custom key-value pairs.
# Sending a notification with data message payload
data_message = {
"Nick" : "Mario",
"body" : "great match!",
"Room" : "PortugalVSDenmark"
}
# To multiple devices
result = push_service.notify_multiple_devices(registration_ids=registration_ids, message_body=message_body, data_message=data_message)
# To a single device
result = push_service.notify_single_device(registration_id=registration_id, message_body=message_body, data_message=data_message)
# Sending a data message only payload, do NOT include message_body also do NOT include notification body
# To multiple devices
result = push_service.multiple_devices_data_message(registration_ids=registration_ids, data_message=data_message)
# To a single device
result = push_service.single_device_data_message(registration_id=registration_id, data_message=data_message)
# To send extra kwargs (notification keyword arguments not provided in any of the methods),
# pass it as a key value in a dictionary to the method being used
extra_notification_kwargs = {
'android_channel_id': 2
}
result = push_service.notify_single_device(registration_id=registration_id, data_message=data_message, extra_notification_kwargs=extra_notification_kwargs)
# To process background notifications in iOS 10, set content_available
result = push_service.notify_single_device(registration_id=registration_id, data_message=data_message, content_available=True)
# To support rich notifications on iOS 10, set
extra_kwargs = {
'mutable_content': True
}
# and then write a NotificationService Extension in your app
# Use notification messages when you want FCM to handle displaying a notification on your app's behalf.
# Use data messages when you just want to process the messages only in your app.
# PyFCM can send a message including both notification and data payloads.
# In such cases, FCM handles displaying the notification payload, and the client app handles the data payload.
Send a low priority message.
# The default is low_priority == False
result = push_service.notify_multiple_devices(registration_ids=registration_ids, message_body=message, low_priority=True)
Get valid registration ids (useful for cleaning up invalid registration ids in your database)
registration_ids = ['reg id 1', 'reg id 2', 'reg id 3', 'reg id 4', ...]
valid_registration_ids = push_service.clean_registration_ids(registration_ids)
# Shoutout to @baali for this
Appengine users should define their environment
push_service = FCMNotification(api_key="<api-key>", proxy_dict=proxy_dict, env='app_engine')
result = push_service.notify_multiple_devices(registration_ids=registration_ids, message_body=message, low_priority=True)
Manage subscriptions to a topic
push_service = FCMNotification(SERVER_KEY)
tokens = [
<registration_id_1>,
<registration_id_2>,
]
subscribed = push_service.subscribe_registration_ids_to_topic(tokens, 'test')
# returns True if successful, raises error if unsuccessful
unsubscribed = push_service.unsubscribe_registration_ids_from_topic(tokens, 'test')
# returns True if successful, raises error if unsuccessful
Sending a message to a topic.
# Send a message to devices subscribed to a topic.
result = push_service.notify_topic_subscribers(topic_name="news", message_body=message)
# Conditional topic messaging
topic_condition = "'TopicA' in topics && ('TopicB' in topics || 'TopicC' in topics)"
result = push_service.notify_topic_subscribers(message_body=message, condition=topic_condition)
# FCM first evaluates any conditions in parentheses, and then evaluates the expression from left to right.
# In the above expression, a user subscribed to any single topic does not receive the message. Likewise,
# a user who does not subscribe to TopicA does not receive the message. These combinations do receive it:
# TopicA and TopicB
# TopicA and TopicC
# Conditions for topics support two operators per expression, and parentheses are supported.
# For more information, check: https://firebase.google.com/docs/cloud-messaging/topic-messaging
Other argument options
collapse_key (str, optional): Identifier for a group of messages
that can be collapsed so that only the last message gets sent
when delivery can be resumed. Defaults to `None`.
delay_while_idle (bool, optional): If `True` indicates that the
message should not be sent until the device becomes active.
time_to_live (int, optional): How long (in seconds) the message
should be kept in FCM storage if the device is offline. The
maximum time to live supported is 4 weeks. Defaults to ``None``
which uses the FCM default of 4 weeks.
low_priority (boolean, optional): Whether to send notification with
the low priority flag. Defaults to `False`.
restricted_package_name (str, optional): Package name of the
application where the registration IDs must match in order to
receive the message. Defaults to `None`.
dry_run (bool, optional): If `True` no message will be sent but
request will be tested.
Get response data.
# Response from PyFCM.
response_dict = {
'multicast_ids': list(), # List of Unique ID (number) identifying the multicast message.
'success': 0, #Number of messages that were processed without an error.
'failure': 0, #Number of messages that could not be processed.
'canonical_ids': 0, #Number of results that contain a canonical registration token.
'results': list(), #Array of dict objects representing the status of the messages processed.
'topic_message_id': None or str
}
# registration_id: Optional string specifying the canonical registration token for the client app that the message
# was processed and sent to. Sender should use this value as the registration token for future requests. Otherwise,
# the messages might be rejected.
# error: String specifying the error that occurred when processing the message for the recipient
For more information, visit: https://firebase.google.com/docs/cloud-messaging/
Checkout fcm-django - Link: https://github.com/xtrinch/fcm-django
Author: Olucurious
Source Code: https://github.com/olucurious/PyFCM
License: MIT license