1598573280
When putting together a SIEM, one of the first things that you need to decide on is the distributed architecture you’re going to choose. This means analyzing the resources available, as well as the needs of your SOC.
These are some of the questions you need to ask yourself. In our particular case, we needed to set up a SIEM for a network of about 20K hosts. We didn’t have a budget for commercial tools or licenses. We needed persistent logging for auditing purposes. This included logging every command executed in our infrastructure, while monitoring for malicious ones. We also wanted low level granularity in order to write custom rules. Basically, we wanted a top-level SOC without spending money. But this is not possible.
#blue-team #infosec #soc #siem #security
1598573280
When putting together a SIEM, one of the first things that you need to decide on is the distributed architecture you’re going to choose. This means analyzing the resources available, as well as the needs of your SOC.
These are some of the questions you need to ask yourself. In our particular case, we needed to set up a SIEM for a network of about 20K hosts. We didn’t have a budget for commercial tools or licenses. We needed persistent logging for auditing purposes. This included logging every command executed in our infrastructure, while monitoring for malicious ones. We also wanted low level granularity in order to write custom rules. Basically, we wanted a top-level SOC without spending money. But this is not possible.
#blue-team #infosec #soc #siem #security
1624653660
A useful tool several businesses implement for answering questions that potential customers may have is a chatbot. Many programming languages give web designers several ways on how to make a chatbot for their websites. They are capable of answering basic questions for visitors and offer innovation for businesses.
With the help of programming languages, it is possible to create a chatbot from the ground up to satisfy someone’s needs.
Before building a chatbot, it is ideal for web designers to determine how it will function on a website. Several chatbot duties center around fulfilling customers’ needs and questions or compiling and optimizing data via transactions.
Some benefits of implementing chatbots include:
Some programmers may choose to design a chatbox to function through predefined answers based on the questions customers may input or function by adapting and learning via human input.
#chatbots #latest news #the best way to build a chatbot in 2021 #build #build a chatbot #best way to build a chatbot
1571046022
Cryptocurrency is a decentralized digital currency that uses encryption techniques to regulate the generation of currency units and to verify the transfer of funds. Anonymity, decentralization, and security are among its main features. Cryptocurrency is not regulated or tracked by any centralized authority, government, or bank.
Blockchain, a decentralized peer-to-peer (P2P) network, which is comprised of data blocks, is an integral part of cryptocurrency. These blocks chronologically store information about transactions and adhere to a protocol for inter-node communication and validating new blocks. The data recorded in blocks cannot be altered without the alteration of all subsequent blocks.
In this article, we are going to explain how you can create a simple blockchain using the Python programming language.
Here is the basic blueprint of the Python class we’ll use for creating the blockchain:
class Block(object):
def __init__():
pass
#initial structure of the block class
def compute_hash():
pass
#producing the cryptographic hash of each block
class BlockChain(object):
def __init__(self):
#building the chain
def build_genesis(self):
pass
#creating the initial block
def build_block(self, proof_number, previous_hash):
pass
#builds new block and adds to the chain
@staticmethod
def confirm_validity(block, previous_block):
pass
#checks whether the blockchain is valid
def get_data(self, sender, receiver, amount):
pass
# declares data of transactions
@staticmethod
def proof_of_work(last_proof):
pass
#adds to the security of the blockchain
@property
def latest_block(self):
pass
#returns the last block in the chain
Now, let’s explain how the blockchain class works.
Here is the code for our initial block class:
import hashlib
import time
class Block(object):
def __init__(self, index, proof_number, previous_hash, data, timestamp=None):
self.index = index
self.proof_number = proof_number
self.previous_hash = previous_hash
self.data = data
self.timestamp = timestamp or time.time()
@property
def compute_hash(self):
string_block = "{}{}{}{}{}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
return hashlib.sha256(string_block.encode()).hexdigest()
As you can see above, the class constructor or initiation method ( init()) above takes the following parameters:
self
— just like any other Python class, this parameter is used to refer to the class itself. Any variable associated with the class can be accessed using it.
index
— it’s used to track the position of a block within the blockchain.
previous_hash
— it used to reference the hash of the previous block within the blockchain.
data—it
gives details of the transactions done, for example, the amount bought.
timestamp—it
inserts a timestamp for all the transactions performed.
The second method in the class, compute_hash , is used to produce the cryptographic hash of each block based on the above values.
As you can see, we imported the SHA-256 algorithm into the cryptocurrency blockchain project to help in getting the hashes of the blocks.
Once the values have been placed inside the hashing module, the algorithm will return a 256-bit string denoting the contents of the block.
So, this is what gives the blockchain immutability. Since each block will be represented by a hash, which will be computed from the hash of the previous block, corrupting any block in the chain will make the other blocks have invalid hashes, resulting in breakage of the whole blockchain network.
The whole concept of a blockchain is based on the fact that the blocks are “chained” to each other. Now, we’ll create a blockchain class that will play the critical role of managing the entire chain.
It will keep the transactions data and include other helper methods for completing various roles, such as adding new blocks.
Let’s talk about the helper methods.
Here is the code:
class BlockChain(object):
def __init__(self):
self.chain = []
self.current_data = []
self.nodes = set()
self.build_genesis()
The init() constructor method is what instantiates the blockchain.
Here are the roles of its attributes:
self.chain — this variable stores all the blocks.
self.current_data — this variable stores information about the transactions in the block.
self.build_genesis() — this method is used to create the initial block in the chain.
The build_genesis()
method is used for creating the initial block in the chain, that is, a block without any predecessors. The genesis block is what represents the beginning of the blockchain.
To create it, we’ll call the build_block()
method and give it some default values. The parameters proof_number
and previous_hash
are both given a value of zero, though you can give them any value you desire.
Here is the code:
def build_genesis(self):
self.build_block(proof_number=0, previous_hash=0)
def build_block(self, proof_number, previous_hash):
block = Block(
index=len(self.chain),
proof_number=proof_number,
previous_hash=previous_hash,
data=self.current_data
)
self.current_data = []
self.chain.append(block)
return block
The confirm_validity
method is critical in examining the integrity of the blockchain and making sure inconsistencies are lacking.
As explained earlier, hashes are pivotal for realizing the security of the cryptocurrency blockchain, because any slight alteration in an object will result in the creation of an entirely different hash.
Thus, the confirm_validity
method utilizes a series of if statements to assess whether the hash of each block has been compromised.
Furthermore, it also compares the hash values of every two successive blocks to identify any anomalies. If the chain is working properly, it returns true; otherwise, it returns false.
Here is the code:
def confirm_validity(block, previous_block):
if previous_block.index + 1 != block.index:
return False
elif previous_block.compute_hash != block.previous_hash:
return False
elif block.timestamp <= previous_block.timestamp:
return False
return True
The get_data
method is important in declaring the data of transactions on a block. This method takes three parameters (sender’s information, receiver’s information, and amount) and adds the transaction data to the self.current_data list.
Here is the code:
def get_data(self, sender, receiver, amount):
self.current_data.append({
'sender': sender,
'receiver': receiver,
'amount': amount
})
return True
In blockchain technology, Proof of Work (PoW) refers to the complexity involved in mining or generating new blocks on the blockchain.
For example, the PoW can be implemented by identifying a number that solves a problem whenever a user completes some computing work. Anyone on the blockchain network should find the number complex to identify but easy to verify — this is the main concept of PoW.
This way, it discourages spamming and compromising the integrity of the network.
In this article, we’ll illustrate how to include a Proof of Work algorithm in a blockchain cryptocurrency project.
Finally, the latest_block() helper method is used for retrieving the last block on the network, which is actually the current block.
Here is the code:
def latest_block(self):
return self.chain[-1]
Now, this is the most exciting section!
Initially, the transactions are kept in a list of unverified transactions. Mining refers to the process of placing the unverified transactions in a block and solving the PoW problem. It can be referred to as the computing work involved in verifying the transactions.
If everything has been figured out correctly, a block is created or mined and joined together with the others in the blockchain. If users have successfully mined a block, they are often rewarded for using their computing resources to solve the PoW problem.
Here is the mining method in this simple cryptocurrency blockchain project:
def block_mining(self, details_miner):
self.get_data(
sender="0", #it implies that this node has created a new block
receiver=details_miner,
quantity=1, #creating a new block (or identifying the proof number) is awarded with 1
)
last_block = self.latest_block
last_proof_number = last_block.proof_number
proof_number = self.proof_of_work(last_proof_number)
last_hash = last_block.compute_hash
block = self.build_block(proof_number, last_hash)
return vars(block)
Here is the whole code for our crypto blockchain class in Python:
import hashlib
import time
class Block(object):
def __init__(self, index, proof_number, previous_hash, data, timestamp=None):
self.index = index
self.proof_number = proof_number
self.previous_hash = previous_hash
self.data = data
self.timestamp = timestamp or time.time()
@property
def compute_hash(self):
string_block = "{}{}{}{}{}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
return hashlib.sha256(string_block.encode()).hexdigest()
def __repr__(self):
return "{} - {} - {} - {} - {}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
class BlockChain(object):
def __init__(self):
self.chain = []
self.current_data = []
self.nodes = set()
self.build_genesis()
def build_genesis(self):
self.build_block(proof_number=0, previous_hash=0)
def build_block(self, proof_number, previous_hash):
block = Block(
index=len(self.chain),
proof_number=proof_number,
previous_hash=previous_hash,
data=self.current_data
)
self.current_data = []
self.chain.append(block)
return block
@staticmethod
def confirm_validity(block, previous_block):
if previous_block.index + 1 != block.index:
return False
elif previous_block.compute_hash != block.previous_hash:
return False
elif block.timestamp <= previous_block.timestamp:
return False
return True
def get_data(self, sender, receiver, amount):
self.current_data.append({
'sender': sender,
'receiver': receiver,
'amount': amount
})
return True
@staticmethod
def proof_of_work(last_proof):
pass
@property
def latest_block(self):
return self.chain[-1]
def chain_validity(self):
pass
def block_mining(self, details_miner):
self.get_data(
sender="0", #it implies that this node has created a new block
receiver=details_miner,
quantity=1, #creating a new block (or identifying the proof number) is awared with 1
)
last_block = self.latest_block
last_proof_number = last_block.proof_number
proof_number = self.proof_of_work(last_proof_number)
last_hash = last_block.compute_hash
block = self.build_block(proof_number, last_hash)
return vars(block)
def create_node(self, address):
self.nodes.add(address)
return True
@staticmethod
def get_block_object(block_data):
return Block(
block_data['index'],
block_data['proof_number'],
block_data['previous_hash'],
block_data['data'],
timestamp=block_data['timestamp']
)
blockchain = BlockChain()
print("GET READY MINING ABOUT TO START")
print(blockchain.chain)
last_block = blockchain.latest_block
last_proof_number = last_block.proof_number
proof_number = blockchain.proof_of_work(last_proof_number)
blockchain.get_data(
sender="0", #this means that this node has constructed another block
receiver="LiveEdu.tv",
amount=1, #building a new block (or figuring out the proof number) is awarded with 1
)
last_hash = last_block.compute_hash
block = blockchain.build_block(proof_number, last_hash)
print("WOW, MINING HAS BEEN SUCCESSFUL!")
print(blockchain.chain)
Now, let’s try to run our code to see if we can generate some digital coins…
Wow, it worked!
That is it!
We hope that this article has assisted you to understand the underlying technology that powers cryptocurrencies such as Bitcoin and Ethereum.
We just illustrated the basic ideas for making your feet wet in the innovative blockchain technology. The project above can still be enhanced by incorporating other features to make it more useful and robust.
Thanks for reading !
Do you have any comments or questions? Please share them below.
#python #cryptocurrency
1612506216
The document is non-binding. Some information may be outdated as we keep evolving.
BUILD Finance is a decentralised autonomous venture builder, owned and controlled by the community. BUILD Finance produces, funds, and manages community-owned DeFi products.
There are five core activities in which the venture BUILDers engage:
BUILD operates a shared capabilities model, where the DAO provides the backbone support and ensures inter-entity synergies so that the product companies can focus on their own outcomes.
BUILD takes care of all organisational, hiring, back/mid office functions, and the product companies focus on what they can do best, until such time where any individual product outgrows the DAO and becomes fully self-sustainable. At that point, the chick is strong enough to leave the nest and live its own life. The survival of the fittest. No product entity is held within DAO by force.
Along the way, BUILD utilises the investment banking model, which, in its essence, is a process of creating assets, gearing them up, and then flipping them into a fund or setting them as income-generating business systems, all this while taking fees along the way at each step. BUILD heavily focuses on integrating each asset/product with each other to boost productive yield and revenues. For example, BUILD’s OTC Market may be integrated with Metric Exchange to connect the liquidity pools with the trading traffic. The net result – pure synergy that benefits each party involved, acting in a self-reinforcing manner.
BUILD is a hive and is always alive. While some members may appear more active than others, there’s no central source of control or “core teams” as such. BUILD is work in progress where everyone is encouraged to contribute.
Following the natural free market forces, BUILD only works on those products that members are wanting to work on themselves and that they believe have economic value. Effectively, every builder is also a user of BUILD’s products. We are DeFi users that fill the gaps in the ecosystem. Any member can contribute from both purely altruistic or ultra-mercantile intentions – it’s up to the wider community to decide what is deemed valuable and what product to support. The BUILD community is a sovereign individual that votes with their money and feet.
BUILD members = BUILD users. It’s that simple.
$BUILD token is used as a governance token for the DAO. It also represents a pro-rata claim of ownership on all DAO’s assets and liabilities (e.g. BUILD Treasury and $bCRED debt token).
The token was distributed via liquidity mining with no pre-sale and zero founder/private allocation. The farming event lasted for 7 days around mid-Sep 2020. At the time, BUILD didn’t have any products and held no value. Arguably, $BUILD has still zero value as it is not a legal instrument and does not guarantee or promise any returns to anyone. See the launch announcement here https://medium.com/@BUILD_Finance/announcing-build-finance-dc08df585e57
Initial supply was 100,000 $BUILD with 100% distributed via fair launch. Subsequently, the DAO unanimously voted to approve minting of extra 30,000 $BUILD and allocate them as:
For the proposal of the above see: https://forum.letsbuild.finance/t/proposal-2-fund-the-development-of-defi-lending-platform/24
The voting took place at a later retired web-page https://vote.letsbuild.finance. The governance has since moved to Snapshot (link below). The results of the old proposals are not visible there, however, on-chain voting contract can be see here: https://etherscan.io/address/0xa8621477645f76b06a41c9393ddaf79ddee63daf#readContract
Minting keys are not burnt = $BUILD supply is not fixed as token holders can vote on minting new tokens for specific reasons determined by the token holders. For example, the DAO may mint additional tokens to incentivise usage of its products, which would, in turn, increase the value flow or TVL. Dilution is not in the economic benefit of the token holders, hence any such events has to be considered carefully.
Access to minting function is available via on-chain governance. A safe buffer is established in a form of the contract-enforced 24 hour delay, which should provide a sufficient time for the community to flag. Meaning that before such a transaction could be executed, everyone would be able to act in advance by withdrawing their funds / exiting from BUILD. Any malicious minting would, theoretically, result in an immediate market sell-off of $BUILD, making it economically detrimental to do such an action. This makes it highly improbable that any malicious minting would be performed_._
All components of the BUILD DAO and the control over its have been decentralised:
The BUILD treasury has over $400k that can be managed by on-chain proposals and used in whichever way the community desires. For example, to hire developers. Having a functioning product, enough funds in the treasury and a fully decentralised governance has been a long-term goal since the inception in September 2020, and now it’s finally here.
Current holdings are (might be outdated):
In an early stage, the development will be funded by an allocation of bCRED debt tokens for development expenses. After the first product was built (i.e. Metric Exchange), the DAO sold 5,000 $BUILD for 203,849 $DAI which will now be used for funding of other products or a combination of revenue + a smaller token allocation. This is up to the community to decide.
Contracts are not audited. It’s up to the BUILD community governance to decide how to spend our funds. If the community wants to spend any amount for auditing, a voting proposal can be initiated. As with any decisions and proposals, the cost-benefit analysis must be employed in regards to the economical sense of spending any funds on audit vs developing more products and expanding our revenue streams.
$bCRED is a token that allowed the DAO to reward members for work before the DAO source sufficient funds. Effectively, $bCRED is a promissory note or an IOU to give back $DAI at 1:1 ratio, when the DAO starts generating revenues. Read more about $bCRED here: https://medium.com/@BUILD_Finance/what-is-bcred-b97e4cc75f8c.
Since Discord is our primary coordination mechanism, we need to make effort to keep it focused on producing value. During the launch of METRIC, we’ve doubled our total number of users! This made it very difficult for existing users to explain what BUILD is about to new users and created a lot of confusion.
To help improve the quality of conversations, we’ve introduced a new user role called BUILDer. BUILDers will have write-access to product development channels while everyone else will only be able to read them. This should keep those product changes focused on actual productive conversations and make them more informative.
To increase our collective output as a community, a governance vote introduced an incentivisation mechanism for community contribution, tipping, and other small projects using our unique bCRED token (but may change in the future as required). These tokens are stewarded by active community members — “guardians’’ — who are free to allocate these funds to tip people for proactive work. Current guardians are @Son of Ishtar and @0xdev0, although anyone can propose the tip for anyone else. For more details see Proposal #15.
Hence, Guardians are defined as members of the DAO who are entrusted with a community budget for tipping other members for performing various small tasks.
The other immediate focus right now will be to make good use of our newly available funding and hire several product managers for other projects.
Please note that nothing is here set in stone. Just like any other start-up, we’ll keep experimenting, learning, and evolving. What’s listed here is just our current trajectory but it might change at any point.
SOCIAL MEDIA
Would you like to earn BUILD right now! ☞ CLICK HERE
Top exchanges for token-coin trading. Follow instructions and make unlimited money
☞ Binance ☞ Bittrex ☞ Poloniex ☞ Bitfinex ☞ Huobi
Thank you for reading!
#blockchain #cryptocurrency #build finance #build
1637600340
Криптовалюта - это децентрализованная цифровая валюта, в которой используются методы шифрования для регулирования генерации денежных единиц и проверки перевода средств. Анонимность, децентрализация и безопасность - одни из его основных характеристик. Криптовалюта не регулируется и не отслеживается каким-либо централизованным органом, правительством или банком.
Блокчейн, децентрализованная одноранговая (P2P) сеть, состоящая из блоков данных, является неотъемлемой частью криптовалюты. Эти блоки хранят информацию о транзакциях в хронологическом порядке и придерживаются протокола для межузловой связи и проверки новых блоков. Данные, записанные в блоках, не могут быть изменены без изменения всех последующих блоков.
В этой статье мы собираемся объяснить, как создать простой блокчейн с помощью языка программирования Python.
Вот базовый план класса Python, который мы будем использовать для создания блокчейна:
class Block(object):
def __init__():
pass
#initial structure of the block class
def compute_hash():
pass
#producing the cryptographic hash of each block
class BlockChain(object):
def __init__(self):
#building the chain
def build_genesis(self):
pass
#creating the initial block
def build_block(self, proof_number, previous_hash):
pass
#builds new block and adds to the chain
@staticmethod
def confirm_validity(block, previous_block):
pass
#checks whether the blockchain is valid
def get_data(self, sender, receiver, amount):
pass
# declares data of transactions
@staticmethod
def proof_of_work(last_proof):
pass
#adds to the security of the blockchain
@property
def latest_block(self):
pass
#returns the last block in the chain
Теперь давайте объясним, как работает класс блокчейна.
Вот код нашего начального класса блока:
import hashlib
import time
class Block(object):
def __init__(self, index, proof_number, previous_hash, data, timestamp=None):
self.index = index
self.proof_number = proof_number
self.previous_hash = previous_hash
self.data = data
self.timestamp = timestamp or time.time()
@property
def compute_hash(self):
string_block = "{}{}{}{}{}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
return hashlib.sha256(string_block.encode()).hexdigest()
Как вы можете видеть выше, конструктор класса или метод инициации ( init ()) выше принимает следующие параметры:
self
- как и любой другой класс Python, этот параметр используется для ссылки на сам класс. С его помощью можно получить доступ к любой переменной, связанной с классом.
index
- он используется для отслеживания положения блока в цепочке блоков.
previous_hash
- он использовался для ссылки на хэш предыдущего блока в цепочке блоков.
data—it
предоставляет подробную информацию о проведенных транзакциях, например, купленную сумму.
timestamp—it
вставляет отметку времени для всех выполненных транзакций.
Второй метод в классе, compute_hash, используется для создания криптографического хэша каждого блока на основе вышеуказанных значений.
Как видите, мы импортировали алгоритм SHA-256 в проект блокчейна криптовалюты, чтобы помочь в получении хэшей блоков.
Как только значения будут помещены в модуль хеширования, алгоритм вернет 256-битную строку, обозначающую содержимое блока.
Итак, это то, что дает неизменяемость блокчейна. Поскольку каждый блок будет представлен хешем, который будет вычисляться из хеша предыдущего блока, повреждение любого блока в цепочке приведет к тому, что другие блоки будут иметь недопустимые хеши, что приведет к поломке всей сети блокчейна.
Вся концепция блокчейна основана на том факте, что блоки «связаны» друг с другом. Теперь мы создадим класс цепочки блоков, который будет играть важную роль в управлении всей цепочкой.
Он будет хранить данные транзакций и включать другие вспомогательные методы для выполнения различных ролей, таких как добавление новых блоков.
Поговорим о вспомогательных методах.
Вот код:
class BlockChain(object):
def __init__(self):
self.chain = []
self.current_data = []
self.nodes = set()
self.build_genesis()
Метод конструктора init () - это то, что создает экземпляр блокчейна.
Вот роли его атрибутов:
self.chain - в этой переменной хранятся все блоки.
self.current_data - в этой переменной хранится информация о транзакциях в блоке.
self.build_genesis () - этот метод используется для создания начального блока в цепочке.
build_genesis()
Метод используется для создания начального блока в цепочке, то есть, блок без каких - либо предшественников. Блок генезиса - это то, что представляет собой начало блокчейна.
Чтобы создать его, мы вызовем build_block()
метод и дадим ему значения по умолчанию. Оба параметра proof_number
и previous_hash
имеют нулевое значение, хотя вы можете присвоить им любое значение, которое пожелаете.
Вот код:
def build_genesis(self):
self.build_block(proof_number=0, previous_hash=0)
def build_block(self, proof_number, previous_hash):
block = Block(
index=len(self.chain),
proof_number=proof_number,
previous_hash=previous_hash,
data=self.current_data
)
self.current_data = []
self.chain.append(block)
return block
Этот confirm_validity
метод имеет решающее значение для проверки целостности цепочки блоков и проверки отсутствия несоответствий.
Как объяснялось ранее, хэши имеют решающее значение для обеспечения безопасности блокчейна криптовалюты, потому что любое небольшое изменение в объекте приведет к созданию совершенно другого хэша.
Таким образом, confirm_validity
метод использует серию операторов if для оценки того, был ли скомпрометирован хэш каждого блока.
Кроме того, он также сравнивает хеш-значения каждых двух последовательных блоков для выявления любых аномалий. Если цепочка работает правильно, возвращается истина; в противном случае возвращается false.
Вот код:
def confirm_validity(block, previous_block):
if previous_block.index + 1 != block.index:
return False
elif previous_block.compute_hash != block.previous_hash:
return False
elif block.timestamp <= previous_block.timestamp:
return False
return True
get_data
Метод имеет важное значение в объявлении данных об операциях на блоке. Этот метод принимает три параметра (информацию об отправителе, информацию о получателе и сумму) и добавляет данные транзакции в список self.current_data.
Вот код:
def get_data(self, sender, receiver, amount):
self.current_data.append({
'sender': sender,
'receiver': receiver,
'amount': amount
})
return True
В технологии блокчейн Proof of Work (PoW) относится к сложности, связанной с майнингом или генерацией новых блоков в блокчейне.
Например, PoW может быть реализован путем определения числа, которое решает проблему всякий раз, когда пользователь выполняет некоторую вычислительную работу. Любой в сети блокчейн должен найти номер сложным для идентификации, но легким для проверки - это основная концепция PoW.
Таким образом, это препятствует распространению спама и нарушению целостности сети.
В этой статье мы покажем, как включить алгоритм Proof of Work в проект криптовалюты на блокчейне.
Наконец, вспомогательный метод latest_block () используется для получения последнего блока в сети, который на самом деле является текущим блоком.
Вот код:
def latest_block(self):
return self.chain[-1]
Теперь это самый интересный раздел!
Изначально транзакции хранятся в списке непроверенных транзакций. Майнинг относится к процессу размещения непроверенных транзакций в блоке и решения проблемы PoW. Это можно назвать вычислительной работой, связанной с проверкой транзакций.
Если все было правильно выяснено, блок создается или добывается и объединяется вместе с другими в цепочке блоков. Если пользователи успешно добыли блок, они часто получают вознаграждение за использование своих вычислительных ресурсов для решения проблемы PoW.
Вот метод майнинга в этом простом проекте блокчейна криптовалюты:
def block_mining(self, details_miner):
self.get_data(
sender="0", #it implies that this node has created a new block
receiver=details_miner,
quantity=1, #creating a new block (or identifying the proof number) is awarded with 1
)
last_block = self.latest_block
last_proof_number = last_block.proof_number
proof_number = self.proof_of_work(last_proof_number)
last_hash = last_block.compute_hash
block = self.build_block(proof_number, last_hash)
return vars(block)
Вот весь код нашего класса криптоблокчейна на Python:
import hashlib
import time
class Block(object):
def __init__(self, index, proof_number, previous_hash, data, timestamp=None):
self.index = index
self.proof_number = proof_number
self.previous_hash = previous_hash
self.data = data
self.timestamp = timestamp or time.time()
@property
def compute_hash(self):
string_block = "{}{}{}{}{}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
return hashlib.sha256(string_block.encode()).hexdigest()
def __repr__(self):
return "{} - {} - {} - {} - {}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
class BlockChain(object):
def __init__(self):
self.chain = []
self.current_data = []
self.nodes = set()
self.build_genesis()
def build_genesis(self):
self.build_block(proof_number=0, previous_hash=0)
def build_block(self, proof_number, previous_hash):
block = Block(
index=len(self.chain),
proof_number=proof_number,
previous_hash=previous_hash,
data=self.current_data
)
self.current_data = []
self.chain.append(block)
return block
@staticmethod
def confirm_validity(block, previous_block):
if previous_block.index + 1 != block.index:
return False
elif previous_block.compute_hash != block.previous_hash:
return False
elif block.timestamp <= previous_block.timestamp:
return False
return True
def get_data(self, sender, receiver, amount):
self.current_data.append({
'sender': sender,
'receiver': receiver,
'amount': amount
})
return True
@staticmethod
def proof_of_work(last_proof):
pass
@property
def latest_block(self):
return self.chain[-1]
def chain_validity(self):
pass
def block_mining(self, details_miner):
self.get_data(
sender="0", #it implies that this node has created a new block
receiver=details_miner,
quantity=1, #creating a new block (or identifying the proof number) is awared with 1
)
last_block = self.latest_block
last_proof_number = last_block.proof_number
proof_number = self.proof_of_work(last_proof_number)
last_hash = last_block.compute_hash
block = self.build_block(proof_number, last_hash)
return vars(block)
def create_node(self, address):
self.nodes.add(address)
return True
@staticmethod
def get_block_object(block_data):
return Block(
block_data['index'],
block_data['proof_number'],
block_data['previous_hash'],
block_data['data'],
timestamp=block_data['timestamp']
)
blockchain = BlockChain()
print("GET READY MINING ABOUT TO START")
print(blockchain.chain)
last_block = blockchain.latest_block
last_proof_number = last_block.proof_number
proof_number = blockchain.proof_of_work(last_proof_number)
blockchain.get_data(
sender="0", #this means that this node has constructed another block
receiver="LiveEdu.tv",
amount=1, #building a new block (or figuring out the proof number) is awarded with 1
)
last_hash = last_block.compute_hash
block = blockchain.build_block(proof_number, last_hash)
print("WOW, MINING HAS BEEN SUCCESSFUL!")
print(blockchain.chain)
Теперь давайте попробуем запустить наш код, чтобы посмотреть, сможем ли мы сгенерировать несколько цифровых монет ...
Вау, сработало!
Вот и все!
Мы надеемся, что эта статья помогла вам понять базовую технологию, на которой работают такие криптовалюты, как Биткойн и Эфириум.
Мы просто проиллюстрировали основные идеи, как сделать ваши ноги влажными в инновационной технологии блокчейн. Вышеупомянутый проект все еще можно улучшить, добавив другие функции, чтобы сделать его более полезным и надежным.