David  Keebler

David Keebler

1634295600

How to Use Keyboard To Track Raycast NodeJS Extended Time

Raycast is a new tool for macOS that is an alternative to the built-in Spotlight. Like a lot of these tools, you can customize Raycast by adding your own extensions, and Raycast seems incredibly flexible and code-agnostic. You can write shell scripts, Python, NodeJS, etc. Toggl Track is a web tool for time tracking that comes with an API integration in the free tier!

#nodejs 

What is GEEK

Buddha Community

How to Use Keyboard To Track Raycast NodeJS Extended Time
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Hire NodeJs Developer

Looking to build dynamic, extensively featured, and full-fledged web applications?

Hire NodeJs Developer to create a real-time, faster, and scalable application to accelerate your business. At HourlyDeveloper.io, we have a team of expert Node.JS developers, who have experience in working with Bootstrap, HTML5, & CSS, and also hold the knowledge of the most advanced frameworks and platforms.

Contact our experts: https://bit.ly/3hUdppS

#hire nodejs developer #nodejs developer #nodejs development company #nodejs development services #nodejs development #nodejs

David  Keebler

David Keebler

1634295600

How to Use Keyboard To Track Raycast NodeJS Extended Time

Raycast is a new tool for macOS that is an alternative to the built-in Spotlight. Like a lot of these tools, you can customize Raycast by adding your own extensions, and Raycast seems incredibly flexible and code-agnostic. You can write shell scripts, Python, NodeJS, etc. Toggl Track is a web tool for time tracking that comes with an API integration in the free tier!

#nodejs 

Why Use WordPress? What Can You Do With WordPress?

Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?

WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:

1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.

2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.

3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.

4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.

5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.

6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.

Read More

#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website

Beth  Cooper

Beth Cooper

1659694200

Easy Activity Tracking for Models, Similar to Github's Public Activity

PublicActivity

public_activity provides easy activity tracking for your ActiveRecord, Mongoid 3 and MongoMapper models in Rails 3 and 4.

Simply put: it can record what happens in your application and gives you the ability to present those recorded activities to users - in a similar way to how GitHub does it.

!! WARNING: README for unreleased version below. !!

You probably don't want to read the docs for this unreleased version 2.0.

For the stable 1.5.X readme see: https://github.com/chaps-io/public_activity/blob/1-5-stable/README.md

About

Here is a simple example showing what this gem is about:

Example usage

Tutorials

Screencast

Ryan Bates made a great screencast describing how to integrate Public Activity.

Tutorial

A great step-by-step guide on implementing activity feeds using public_activity by Ilya Bodrov.

Online demo

You can see an actual application using this gem here: http://public-activity-example.herokuapp.com/feed

The source code of the demo is hosted here: https://github.com/pokonski/activity_blog

Setup

Gem installation

You can install public_activity as you would any other gem:

gem install public_activity

or in your Gemfile:

gem 'public_activity'

Database setup

By default public_activity uses Active Record. If you want to use Mongoid or MongoMapper as your backend, create an initializer file in your Rails application with the corresponding code inside:

For Mongoid:

# config/initializers/public_activity.rb
PublicActivity.configure do |config|
  config.orm = :mongoid
end

For MongoMapper:

# config/initializers/public_activity.rb
PublicActivity.configure do |config|
  config.orm = :mongo_mapper
end

(ActiveRecord only) Create migration for activities and migrate the database (in your Rails project):

rails g public_activity:migration
rake db:migrate

Model configuration

Include PublicActivity::Model and add tracked to the model you want to keep track of:

For ActiveRecord:

class Article < ActiveRecord::Base
  include PublicActivity::Model
  tracked
end

For Mongoid:

class Article
  include Mongoid::Document
  include PublicActivity::Model
  tracked
end

For MongoMapper:

class Article
  include MongoMapper::Document
  include PublicActivity::Model
  tracked
end

And now, by default create/update/destroy activities are recorded in activities table. This is all you need to start recording activities for basic CRUD actions.

Optional: If you don't need #tracked but still want the comfort of #create_activity, you can include only the lightweight Common module instead of Model.

Custom activities

You can trigger custom activities by setting all your required parameters and triggering create_activity on the tracked model, like this:

@article.create_activity key: 'article.commented_on', owner: current_user

See this entry http://rubydoc.info/gems/public_activity/PublicActivity/Common:create_activity for more details.

Displaying activities

To display them you simply query the PublicActivity::Activity model:

# notifications_controller.rb
def index
  @activities = PublicActivity::Activity.all
end

And in your views:

<%= render_activities(@activities) %>

Note: render_activities is an alias for render_activity and does the same.

Layouts

You can also pass options to both activity#render and #render_activity methods, which are passed deeper to the internally used render_partial method. A useful example would be to render activities wrapped in layout, which shares common elements of an activity, like a timestamp, owner's avatar etc:

<%= render_activities(@activities, layout: :activity) %>

The activity will be wrapped with the app/views/layouts/_activity.html.erb layout, in the above example.

Important: please note that layouts for activities are also partials. Hence the _ prefix.

Locals

Sometimes, it's desirable to pass additional local variables to partials. It can be done this way:

<%= render_activity(@activity, locals: {friends: current_user.friends}) %>

Note: Before 1.4.0, one could pass variables directly to the options hash for #render_activity and access it from activity parameters. This functionality is retained in 1.4.0 and later, but the :locals method is preferred, since it prevents bugs from shadowing variables from activity parameters in the database.

Activity views

public_activity looks for views in app/views/public_activity.

For example, if you have an activity with :key set to "activity.user.changed_avatar", the gem will look for a partial in app/views/public_activity/user/_changed_avatar.html.(|erb|haml|slim|something_else).

Hint: the "activity." prefix in :key is completely optional and kept for backwards compatibility, you can skip it in new projects.

If you would like to fallback to a partial, you can utilize the fallback parameter to specify the path of a partial to use when one is missing:

<%= render_activity(@activity, fallback: 'default') %>

When used in this manner, if a partial with the specified :key cannot be located it will use the partial defined in the fallback instead. In the example above this would resolve to public_activity/_default.html.(|erb|haml|slim|something_else).

If a view file does not exist then ActionView::MisingTemplate will be raised. If you wish to fallback to the old behaviour and use an i18n based translation in this situation you can specify a :fallback parameter of text to fallback to this mechanism like such:

<%= render_activity(@activity, fallback: :text) %>

i18n

Translations are used by the #text method, to which you can pass additional options in form of a hash. #render method uses translations when view templates have not been provided. You can render pure i18n strings by passing {display: :i18n} to #render_activity or #render.

Translations should be put in your locale .yml files. To render pure strings from I18n Example structure:

activity:
  article:
    create: 'Article has been created'
    update: 'Someone has edited the article'
    destroy: 'Some user removed an article!'

This structure is valid for activities with keys "activity.article.create" or "article.create". As mentioned before, "activity." part of the key is optional.

Testing

For RSpec you can first disable public_activity and add require helper methods in the rails_helper.rb with:

#rails_helper.rb
require 'public_activity/testing'

PublicActivity.enabled = false

In your specs you can then blockwise decide whether to turn public_activity on or off.

# file_spec.rb
PublicActivity.with_tracking do
  # your test code goes here
end

PublicActivity.without_tracking do
  # your test code goes here
end

Documentation

For more documentation go here

Common examples

Set the Activity's owner to current_user by default

You can set up a default value for :owner by doing this:

  1. Include PublicActivity::StoreController in your ApplicationController like this:
class ApplicationController < ActionController::Base
  include PublicActivity::StoreController
end
  1. Use Proc in :owner attribute for tracked class method in your desired model. For example:
class Article < ActiveRecord::Base
  tracked owner: Proc.new{ |controller, model| controller.current_user }
end

Note: current_user applies to Devise, if you are using a different authentication gem or your own code, change the current_user to a method you use.

Disable tracking for a class or globally

If you need to disable tracking temporarily, for example in tests or db/seeds.rb then you can use PublicActivity.enabled= attribute like below:

# Disable p_a globally
PublicActivity.enabled = false

# Perform some operations that would normally be tracked by p_a:
Article.create(title: 'New article')

# Switch it back on
PublicActivity.enabled = true

You can also disable public_activity for a specific class:

# Disable p_a for Article class
Article.public_activity_off

# p_a will not do anything here:
@article = Article.create(title: 'New article')

# But will be enabled for other classes:
# (creation of the comment will be recorded if you are tracking the Comment class)
@article.comments.create(body: 'some comment!')

# Enable it again for Article:
Article.public_activity_on

Create custom activities

Besides standard, automatic activities created on CRUD actions on your model (deactivatable), you can post your own activities that can be triggered without modifying the tracked model. There are a few ways to do this, as PublicActivity gives three tiers of options to be set.

Instant options

Because every activity needs a key (otherwise: NoKeyProvided is raised), the shortest and minimal way to post an activity is:

@user.create_activity :mood_changed
# the key of the action will be user.mood_changed
@user.create_activity action: :mood_changed # this is exactly the same as above

Besides assigning your key (which is obvious from the code), it will take global options from User class (given in #tracked method during class definition) and overwrite them with instance options (set on @user by #activity method). You can read more about options and how PublicActivity inherits them for you here.

Note the action parameter builds the key like this: "#{model_name}.#{action}". You can read further on options for #create_activity here.

To provide more options, you can do:

@user.create_activity action: 'poke', parameters: {reason: 'bored'}, recipient: @friend, owner: current_user

In this example, we have provided all the things we could for a standard Activity.

Use custom fields on Activity

Besides the few fields that every Activity has (key, owner, recipient, trackable, parameters), you can also set custom fields. This could be very beneficial, as parameters are a serialized hash, which cannot be queried easily from the database. That being said, use custom fields when you know that you will set them very often and search by them (don't forget database indexes :) ).

Set owner and recipient based on associations

class Comment < ActiveRecord::Base
  include PublicActivity::Model
  tracked owner: :commenter, recipient: :commentee

  belongs_to :commenter, :class_name => "User"
  belongs_to :commentee, :class_name => "User"
end

Resolve parameters from a Symbol or Proc

class Post < ActiveRecord::Base
  include PublicActivity::Model
  tracked only: [:update], parameters: :tracked_values
  
  def tracked_values
   {}.tap do |hash|
     hash[:tags] = tags if tags_changed?
   end
  end
end

Setup

Skip this step if you are using ActiveRecord in Rails 4 or Mongoid

The first step is similar in every ORM available (except mongoid):

PublicActivity::Activity.class_eval do
  attr_accessible :custom_field
end

place this code under config/initializers/public_activity.rb, you have to create it first.

To be able to assign to that field, we need to move it to the mass assignment sanitizer's whitelist.

Migration

If you're using ActiveRecord, you will also need to provide a migration to add the actual field to the Activity. Taken from our tests:

class AddCustomFieldToActivities < ActiveRecord::Migration
  def change
    change_table :activities do |t|
      t.string :custom_field
    end
  end
end

Assigning custom fields

Assigning is done by the same methods that you use for normal parameters: #tracked, #create_activity. You can just pass the name of your custom variable and assign its value. Even better, you can pass it to #tracked to tell us how to harvest your data for custom fields so we can do that for you.

class Article < ActiveRecord::Base
  include PublicActivity::Model
  tracked custom_field: proc {|controller, model| controller.some_helper }
end

Help

If you need help with using public_activity please visit our discussion group and ask a question there:

https://groups.google.com/forum/?fromgroups#!forum/public-activity

Please do not ask general questions in the Github Issues.


Author: public-activity
Source code: https://github.com/public-activity/public_activity
License: MIT license

#ruby  #ruby-on-rails