1561797591
Server-side pagination is very useful when we are dealing with huge amounts of data. When there’s a lot of data, client-side pagination will take a long time to get all the data to the same time, so it’s better to make a server call on every page request.
This is a simple example of how to implement server-side pagination in Angular 8 with a Node.js backend API.
The example contains a hard coded array of 150 objects split into 30 pages (5 items per page) to demonstrate how the pagination logic works. Styling of the example is done with Bootstrap 4.
npm install
command in the /server
folder.npm start
in the /server
folder, this will start the API on the URL http://localhost:4000.npm install
command in the /client
folder.npm start
in the /client
folder, this will build the app with webpack and automatically launch it in a browser on the URL http://localhost:8080.Pagination is handled by the backend Node API with the help of the jw-paginate
npm package.
Below is the code for the paged items route (/api/items
) in the node server file (/server/server.js
) in the example, it creates a hardcoded list of 150 items to be paged, in a real application you would replace this with real data (e.g. from a database). The route accepts an optional page
parameter in the url query string, if the parameter isn’t set it defaults to the first page.
The paginate()
function is from the jw-paginate
package and accepts the following parameters:
totalItems
(required) - the total number of items to be pagedcurrentPage
(optional) - the current active page, defaults to the first pagepageSize
(optional) - the number of items per page, defaults to 10maxPages
(optional) - the maximum number of page navigation links to display, defaults to 10The output of the paginate function is a pager object containing all the information needed to get the current pageOfItems
out of the items
array, and to display the pagination controls in the Angular frontend, including:
startIndex
- the index of the first item of the current page (e.g. 0
)endIndex
- the index of the last item of the current page (e.g. 9
)pages
- the array of page numbers to display (e.g. [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
)currentPage
- the current active page (e.g. 1
)totalPages
- the total number of pages (e.g. 30
)I’ve set the pageSize
to 5
in the CodeSandbox example above so the pagination links aren’t hidden below the terminal console when the container starts up. In the code on GitHub I didn’t set the page size so the default 10 items are displayed per page in that version.
The current pageOfItems
is extracted from the items
array using the startIndex
and endIndex
from the pager
object. The route then returns the pager object and current page of items in a JSON response.
// paged items route
app.get('/api/items', (req, res, next) => {
// example array of 150 items to be paged
const items = [...Array(150).keys()].map(i => ({ id: (i + 1), name: 'Item ' + (i + 1) }));
// get page from query params or default to first page
const page = parseInt(req.query.page) || 1;
// get pager object for specified page
const pageSize = 5;
const pager = paginate(items.length, page, pageSize);
// get page of items from items array
const pageOfItems = items.slice(pager.startIndex, pager.endIndex + 1);
// return pager object and current page of items
return res.json({ pager, pageOfItems });
});
Since the pagination logic is handled on the server, the only thing the Angular client needs to do is fetch the pager information and current page of items from the backend, and display them to the user.
Below is the Angular app component (/client/src/app/app.component.ts
) from the example. The setPage()
method fetches the pager
object and pageOfItems
for the specified page
from the backend API with an HTTP request, and the constructor()
sets the initial page to 1
when the component first loads.
import { Component } from '@angular/core';
import { HttpClient } from '@angular/common/http';
@Component({ selector: 'app', templateUrl: 'app.component.html' })
export class AppComponent {
pager = {};
pageOfItems = [];
constructor(private http: HttpClient) {
// start on page 1
this.setPage(1);
}
setPage(page: number) {
// get new pager object and page of items from the api
this.http.get(`/api/items?page=${page}`)
.subscribe(response => {
this.pager = response.pager;
this.pageOfItems = response.pageOfItems;
});
}
}
The app component template (/client/src/app/app.component.html
) renders the current page of items as a list of divs with the *ngFor
directive, and renders the pagination controls using the data from the pager
object.
The CSS classes used are all part of Bootstrap 4.3, for more info see https://getbootstrap.com/docs/4.3/getting-started/introduction/.
<div class="card text-center m-3">
<h3 class="card-header">Angular 8 + Node - Server Side Pagination Example</h3>
<div class="card-body">
<div *ngFor="let item of pageOfItems">{{item.name}}</div>
</div>
<div class="card-footer pb-0 pt-3">
<ul *ngIf="pager.pages && pager.pages.length" class="pagination">
<li [ngClass]="{disabled:pager.currentPage === 1}" class="page-item first-item">
<a (click)="setPage(1)" class="page-link">First</a>
</li>
<li [ngClass]="{disabled:pager.currentPage === 1}" class="page-item previous-item">
<a (click)="setPage(pager.currentPage - 1)" class="page-link">Previous</a>
</li>
<li *ngFor="let page of pager.pages" [ngClass]="{active:pager.currentPage === page}"
class="page-item number-item">
<a (click)="setPage(page)" class="page-link">{{page}}</a>
</li>
<li [ngClass]="{disabled:pager.currentPage === pager.totalPages}" class="page-item next-item">
<a (click)="setPage(pager.currentPage + 1)" class="page-link">Next</a>
</li>
<li [ngClass]="{disabled:pager.currentPage === pager.totalPages}" class="page-item last-item">
<a (click)="setPage(pager.totalPages)" class="page-link">Last</a>
</li>
</ul>
</div>
</div>
The tutorial code is available on GitHub
Thanks for reading ❤
If you liked this post, share it with all of your programming buddies!
Follow us on Facebook | Twitter
☞ Angular 8 (formerly Angular 2) - The Complete Guide
☞ Angular & NodeJS - The MEAN Stack Guide
☞ The Complete Node.js Developer Course (3rd Edition)
☞ Best 50 Angular Interview Questions for Frontend Developers in 2019
☞ MEAN Stack Angular 8 CRUD Web Application
☞ Angular 8 Tutorial - User Registration and Login Example
☞ How to build a CRUD Web App with Angular 8.0
☞ Building CRUD Mobile App using Ionic 4, Angular 8
☞ Angular 8 Material Design Tutorial & Example
#angular #node-js #javascript #web-development
1632537859
Not babashka. Node.js babashka!?
Ad-hoc CLJS scripting on Node.js.
Experimental. Please report issues here.
Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.
Additional goals and features are:
Nbb requires Node.js v12 or newer.
CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).
Install nbb
from NPM:
$ npm install nbb -g
Omit -g
for a local install.
Try out an expression:
$ nbb -e '(+ 1 2 3)'
6
And then install some other NPM libraries to use in the script. E.g.:
$ npm install csv-parse shelljs zx
Create a script which uses the NPM libraries:
(ns script
(:require ["csv-parse/lib/sync$default" :as csv-parse]
["fs" :as fs]
["path" :as path]
["shelljs$default" :as sh]
["term-size$default" :as term-size]
["zx$default" :as zx]
["zx$fs" :as zxfs]
[nbb.core :refer [*file*]]))
(prn (path/resolve "."))
(prn (term-size))
(println (count (str (fs/readFileSync *file*))))
(prn (sh/ls "."))
(prn (csv-parse "foo,bar"))
(prn (zxfs/existsSync *file*))
(zx/$ #js ["ls"])
Call the script:
$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs
Nbb has first class support for macros: you can define them right inside your .cljs
file, like you are used to from JVM Clojure. Consider the plet
macro to make working with promises more palatable:
(defmacro plet
[bindings & body]
(let [binding-pairs (reverse (partition 2 bindings))
body (cons 'do body)]
(reduce (fn [body [sym expr]]
(let [expr (list '.resolve 'js/Promise expr)]
(list '.then expr (list 'clojure.core/fn (vector sym)
body))))
body
binding-pairs)))
Using this macro we can look async code more like sync code. Consider this puppeteer example:
(-> (.launch puppeteer)
(.then (fn [browser]
(-> (.newPage browser)
(.then (fn [page]
(-> (.goto page "https://clojure.org")
(.then #(.screenshot page #js{:path "screenshot.png"}))
(.catch #(js/console.log %))
(.then #(.close browser)))))))))
Using plet
this becomes:
(plet [browser (.launch puppeteer)
page (.newPage browser)
_ (.goto page "https://clojure.org")
_ (-> (.screenshot page #js{:path "screenshot.png"})
(.catch #(js/console.log %)))]
(.close browser))
See the puppeteer example for the full code.
Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet
macro is similar to promesa.core/let
.
$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)' 0.17s user 0.02s system 109% cpu 0.168 total
The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx
this adds another 300ms or so, so for faster startup, either use a globally installed nbb
or use $(npm bin)/nbb script.cljs
to bypass npx
.
Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.
To load .cljs
files from local paths or dependencies, you can use the --classpath
argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs
relative to your current dir, then you can load it via (:require [foo.bar :as fb])
. Note that nbb
uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar
in the namespace name becomes foo_bar
in the directory name.
To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:
$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"
and then feed it to the --classpath
argument:
$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]
Currently nbb
only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar
files will be added later.
The name of the file that is currently being executed is available via nbb.core/*file*
or on the metadata of vars:
(ns foo
(:require [nbb.core :refer [*file*]]))
(prn *file*) ;; "/private/tmp/foo.cljs"
(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"
Nbb includes reagent.core
which will be lazily loaded when required. You can use this together with ink to create a TUI application:
$ npm install ink
ink-demo.cljs
:
(ns ink-demo
(:require ["ink" :refer [render Text]]
[reagent.core :as r]))
(defonce state (r/atom 0))
(doseq [n (range 1 11)]
(js/setTimeout #(swap! state inc) (* n 500)))
(defn hello []
[:> Text {:color "green"} "Hello, world! " @state])
(render (r/as-element [hello]))
Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core
namespace is included with the let
and do!
macros. An example:
(ns prom
(:require [promesa.core :as p]))
(defn sleep [ms]
(js/Promise.
(fn [resolve _]
(js/setTimeout resolve ms))))
(defn do-stuff
[]
(p/do!
(println "Doing stuff which takes a while")
(sleep 1000)
1))
(p/let [a (do-stuff)
b (inc a)
c (do-stuff)
d (+ b c)]
(prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3
Also see API docs.
Since nbb v0.0.75 applied-science/js-interop is available:
(ns example
(:require [applied-science.js-interop :as j]))
(def o (j/lit {:a 1 :b 2 :c {:d 1}}))
(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1
Most of this library is supported in nbb, except the following:
:syms
.-x
notation. In nbb, you must use keywords.See the example of what is currently supported.
See the examples directory for small examples.
Also check out these projects built with nbb:
See API documentation.
See this gist on how to convert an nbb script or project to shadow-cljs.
Prequisites:
To build:
bb release
Run bb tasks
for more project-related tasks.
Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb
License: EPL-1.0
#node #javascript
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1622719015
Front-end web development has been overwhelmed by JavaScript highlights for quite a long time. Google, Facebook, Wikipedia, and most of all online pages use JS for customer side activities. As of late, it additionally made a shift to cross-platform mobile development as a main technology in React Native, Nativescript, Apache Cordova, and other crossover devices.
Throughout the most recent couple of years, Node.js moved to backend development as well. Designers need to utilize a similar tech stack for the whole web project without learning another language for server-side development. Node.js is a device that adjusts JS usefulness and syntax to the backend.
Node.js isn’t a language, or library, or system. It’s a runtime situation: commonly JavaScript needs a program to work, however Node.js makes appropriate settings for JS to run outside of the program. It’s based on a JavaScript V8 motor that can run in Chrome, different programs, or independently.
The extent of V8 is to change JS program situated code into machine code — so JS turns into a broadly useful language and can be perceived by servers. This is one of the advantages of utilizing Node.js in web application development: it expands the usefulness of JavaScript, permitting designers to coordinate the language with APIs, different languages, and outside libraries.
Of late, organizations have been effectively changing from their backend tech stacks to Node.js. LinkedIn picked Node.js over Ruby on Rails since it took care of expanding responsibility better and decreased the quantity of servers by multiple times. PayPal and Netflix did something comparative, just they had a goal to change their design to microservices. We should investigate the motivations to pick Node.JS for web application development and when we are planning to hire node js developers.
The principal thing that makes Node.js a go-to environment for web development is its JavaScript legacy. It’s the most well known language right now with a great many free devices and a functioning local area. Node.js, because of its association with JS, immediately rose in ubiquity — presently it has in excess of 368 million downloads and a great many free tools in the bundle module.
Alongside prevalence, Node.js additionally acquired the fundamental JS benefits:
In addition, it’s a piece of a well known MEAN tech stack (the blend of MongoDB, Express.js, Angular, and Node.js — four tools that handle all vital parts of web application development).
This is perhaps the most clear advantage of Node.js web application development. JavaScript is an unquestionable requirement for web development. Regardless of whether you construct a multi-page or single-page application, you need to know JS well. On the off chance that you are now OK with JavaScript, learning Node.js won’t be an issue. Grammar, fundamental usefulness, primary standards — every one of these things are comparable.
In the event that you have JS designers in your group, it will be simpler for them to learn JS-based Node than a totally new dialect. What’s more, the front-end and back-end codebase will be basically the same, simple to peruse, and keep up — in light of the fact that they are both JS-based.
There’s another motivation behind why Node.js got famous so rapidly. The environment suits well the idea of microservice development (spilling stone monument usefulness into handfuls or many more modest administrations).
Microservices need to speak with one another rapidly — and Node.js is probably the quickest device in information handling. Among the fundamental Node.js benefits for programming development are its non-obstructing algorithms.
Node.js measures a few demands all at once without trusting that the first will be concluded. Many microservices can send messages to one another, and they will be gotten and addressed all the while.
Node.js was worked in view of adaptability — its name really says it. The environment permits numerous hubs to run all the while and speak with one another. Here’s the reason Node.js adaptability is better than other web backend development arrangements.
Node.js has a module that is liable for load adjusting for each running CPU center. This is one of numerous Node.js module benefits: you can run various hubs all at once, and the environment will naturally adjust the responsibility.
Node.js permits even apportioning: you can part your application into various situations. You show various forms of the application to different clients, in light of their age, interests, area, language, and so on. This builds personalization and diminishes responsibility. Hub accomplishes this with kid measures — tasks that rapidly speak with one another and share a similar root.
What’s more, Node’s non-hindering solicitation handling framework adds to fast, letting applications measure a great many solicitations.
Numerous designers consider nonconcurrent to be one of the two impediments and benefits of Node.js web application development. In Node, at whatever point the capacity is executed, the code consequently sends a callback. As the quantity of capacities develops, so does the number of callbacks — and you end up in a circumstance known as the callback damnation.
In any case, Node.js offers an exit plan. You can utilize systems that will plan capacities and sort through callbacks. Systems will associate comparable capacities consequently — so you can track down an essential component via search or in an envelope. At that point, there’s no compelling reason to look through callbacks.
So, these are some of the top benefits of Nodejs in web application development. This is how Nodejs is contributing a lot to the field of web application development.
I hope now you are totally aware of the whole process of how Nodejs is really important for your web project. If you are looking to hire a node js development company in India then I would suggest that you take a little consultancy too whenever you call.
Good Luck!
#node.js development company in india #node js development company #hire node js developers #hire node.js developers in india #node.js development services #node.js development
1616671994
If you look at the backend technology used by today’s most popular apps there is one thing you would find common among them and that is the use of NodeJS Framework. Yes, the NodeJS framework is that effective and successful.
If you wish to have a strong backend for efficient app performance then have NodeJS at the backend.
WebClues Infotech offers different levels of experienced and expert professionals for your app development needs. So hire a dedicated NodeJS developer from WebClues Infotech with your experience requirement and expertise.
So what are you waiting for? Get your app developed with strong performance parameters from WebClues Infotech
For inquiry click here: https://www.webcluesinfotech.com/hire-nodejs-developer/
Book Free Interview: https://bit.ly/3dDShFg
#hire dedicated node.js developers #hire node.js developers #hire top dedicated node.js developers #hire node.js developers in usa & india #hire node js development company #hire the best node.js developers & programmers
1621320738
Whether MNCs or Startups, many companies use Angular.JS or Node.JS to develop web applications as these are among the best JavaScript frameworks used for web applications.
According to Statista, Node.JS and Angular.JS are the best frameworks used by developers, with 51.4% and 25.1%, respectively.
Both these frameworks have unique features and advantages, which makes them preferred over the other frameworks.
Many enterprises use these frameworks without even understanding their uniqueness and the type of projects they are suited or made, which is why, today, I will compare some of the best features and advantages of these two frameworks.
So, let’s dive into and learn various things about Angular.JS vs Node.JS without any further delay.
Angular.JS
AngularJS is a fundamental framework for robust web apps. It makes you use HTML as your template language and allows you to spread HTML’s syntax to clearly and succinctly express your application’s components.
AngularJS’s dependency injection & data binding eliminate much of the code you would otherwise have to write. And it all happens within the browser, making it a perfect partner with any server technology.
AngularJS is what HTML would have been having it been designed for applications. HTML is a great declarative language for static documents. It does not contain much in creating applications.
Let’s discuss some main features of Angular.JS and its advantages:
Data Binding
Data binding is probably the most impressive and helpful feature of AngularJS. It will save you from writing a considerable amount of repetitive code.
A typical web application can contain up to 80% of its codebase, dedicated to traversing, manipulating, and listening to the DOM. Data binding makes this code escape so you can concentrate more on your application. Think of your Model as the only source of truth for your application. Your model is where you go to read or update anything in your application.
Data binding directives provide a projection of your Model to the application’s view. This projection is perfect and occurs without any effort on your part.
HTML UI
Another great feature of AngularJS is the fact that it uses the HTML language to build UI. The HTML language is a general and declarative language with concise tags that are easy to understand.
This leads to a more systematic and straightforward UI. JavaScript interfaces are usually more challenging to organize and develop. If you’re looking for a solution that’s fast, easy, and simple to use at a moment’s notice, then this could be it.
Model View Controller (MVC)
MVC is a software design pattern for developing web applications. It is made up of:
Directives allow angular to provide additional functionality with the HTML language. Directives can also be used to “decorate” components with behavior and manipulate DOM attributes in interesting ways. The controller does not need to control the DOM directly, as this must be done through directives.
Directives are a separate part of the set of elements that can be used anywhere other than a web application. The directives provide developers with the element-rich HTML they need to strengthen their online presence.
If you are looking to hire a dedicated angular developer, you can hire an angular js development company.
Node.js is a free and open-source server environment that runs on various platforms(Windows, Linux, Unix, Mac, OS X, etc.). Node.js uses JavaScript on the server.
Node.js is preferred because of its rich library of several JavaScript modules that helps in simplifying web development to a greater extent. Many companies hire Node.js developers for making a NodeJS web application development as it possesses many features.
Read More - https://www.valuecoders.com/blog/technology-and-apps/angular-js-vs-node-js-find-the-best-for-your-project/
#hire nodejs developer #node js development services #hire node js developer #hiring node js developers #hire node js developers #hire dedicated angular js developer