Nigel  Uys

Nigel Uys

1616237460

Deploying a database driven Golang application to Kubernetes

In this example we are going to deploy a very simple database driven Golang RESTful application to Kubernetes. The important point here is that the database is not a Pod. It is in the cloud so we will access it through the Internet by relying on secrets. The application will run its own HTTP server as usual and serve requests coming in.

Structure

├── Makefile
├── .env.dist
├── build
│   ├── deploy
│   │   └── k8s
│   │       ├── deployment.yaml
│   │       ├── secret.yaml
│   │       └── service.yaml
│   └── docker
│       └── dev
│           └── Dockerfile
└── main.go

#go #kubernetes #mysql

What is GEEK

Buddha Community

Deploying a database driven Golang application to Kubernetes
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Ruth  Nabimanya

Ruth Nabimanya

1620640920

How to Efficiently Choose the Right Database for Your Applications

Finding the right database solution for your application is not easy. Learn how to efficiently find a database for your applications.

Finding the right database solution for your application is not easy. At iQIYI, one of the largest online video sites in the world, we’re experienced in database selection across several fields: Online Transactional Processing (OLTP), Online Analytical Processing (OLAP), Hybrid Transaction/Analytical Processing (HTAP), SQL, and NoSQL.

Today, I’ll share with you:

  • What criteria to use for selecting a database.
  • What databases we use at iQIYI.
  • Some decision models to help you efficiently pick a database.
  • Tips for choosing your database.

I hope this post can help you easily find the right database for your applications.

#database architecture #database application #database choice #database management system #database management tool

Ruth  Nabimanya

Ruth Nabimanya

1623169620

Multi-Region Database Deployments

Modern applications and services demand an always-on, low-latency experience for users no matter where they are on the planet. To meet these requirements, many deploy multiple instances of their applications and services across multiple cloud regions. This legacy approach leaves room for downtime and, even worse, inconsistencies in data. In this Refcard, we explore patterns and anti-patterns to multi-region database deployments — allowing your applications to survive a region failure without downtime while also ensuring consistent and low latency access to data no matter where you do business.

Table of Contents

► Introduction

► What Is a Multi-Region Application?

► Common Patterns and Anti-Patterns

► Final Thoughts

Section 1

Introduction

Deployed in the cloud, our modern applications and services demand an always-on, low latency experience for users no matter where they are on the planet. Whether you’re building a startup from the ground up or you are a member of a massive Fortune 500 development organization, these demands are typically the same.

To meet these requirements, many deploy multiple instances of their applications and services across multiple cloud regions. Some will deploy a database and synchronize it across multiple regions so that they can survive a regional outage as well. It’s not enough. This legacy approach leaves room for downtime and even worse, inconsistencies in data.

Deployment of an active-active database with multi-region capabilities that can be applied down to the table and row level of your data will allow you to not only survive a region failure without downtime, but also ensure consistent and low latency access to data no matter where you do business.

#database deployments #multi-region #multi-region application #multi-region database #multi-region database deployments #cross-​region

Ruth  Nabimanya

Ruth Nabimanya

1620633584

System Databases in SQL Server

Introduction

In SSMS, we many of may noticed System Databases under the Database Folder. But how many of us knows its purpose?. In this article lets discuss about the System Databases in SQL Server.

System Database

Fig. 1 System Databases

There are five system databases, these databases are created while installing SQL Server.

  • Master
  • Model
  • MSDB
  • Tempdb
  • Resource
Master
  • This database contains all the System level Information in SQL Server. The Information in form of Meta data.
  • Because of this master database, we are able to access the SQL Server (On premise SQL Server)
Model
  • This database is used as a template for new databases.
  • Whenever a new database is created, initially a copy of model database is what created as new database.
MSDB
  • This database is where a service called SQL Server Agent stores its data.
  • SQL server Agent is in charge of automation, which includes entities such as jobs, schedules, and alerts.
TempDB
  • The Tempdb is where SQL Server stores temporary data such as work tables, sort space, row versioning information and etc.
  • User can create their own version of temporary tables and those are stored in Tempdb.
  • But this database is destroyed and recreated every time when we restart the instance of SQL Server.
Resource
  • The resource database is a hidden, read only database that holds the definitions of all system objects.
  • When we query system object in a database, they appear to reside in the sys schema of the local database, but in actually their definitions reside in the resource db.

#sql server #master system database #model system database #msdb system database #sql server system databases #ssms #system database #system databases in sql server #tempdb system database

Maud  Rosenbaum

Maud Rosenbaum

1601051854

Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.

Stability

In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud