A Complete Machine Learning Project in Credit Card Detection with Exceeding Accuracy!

A Complete Machine Learning Project in Credit Card Detection with Exceeding Accuracy!

Learn to build projects in credit card fraud detection with Machine Learning

Introduction

Machine Learning is a subset of AI (artificial intelligence) and also perhaps one of the most popular concepts. It allows machines or systems to learn tasks on their own, without needing too much of human assistance. It focuses on the development of computer programs that can access data on its own and use it to train itself independently. These lessons can be learned by the system by repeated patterns of the same problem, or with instructions. Machine learning enables huge quantities of data. It is accurate and fast but also requires a lot of time and resources to be trained properly. With exciting career options, a machine learning expert can earn salaries as high as $120,000.

Machine Learning has numerous applications in today’s technological world. One of its key applications comes in detecting credit card frauds. Credit card fraud has become quite common with time. Detecting it can often prove to be a strenuous task and sometimes it can take a long time after the act is committed. But with machine learning, the process becomes faster and more accurate.

Contents of the Tutorial

There are many tutorials that explain how machine learning helps in detecting credit card fraud. But this video, explains complete project in credit card fraud with machine learning. This tutorial starts by explaining what a credit card fraud is, the ways it can happen and many more vital concepts imperative to this topic. The tutorial is taught by Dr.Partha Dey, a subject expert from one of the most reputed institutes in India.

The video starts with an introduction to credit card fraud detection, where the tutor details more about fraudulent credit card transactions is and the challenges associated with it. This helps the student get a general overview of what the topic is all about.

After this, the students are taken to the next phase of downloading the data-set from a well-known resource. After downloading the database, the video will guide you to take a closer look at the variables. The next step is the part which consumes most of the time for data scientists- Data Cleaning. But here, the topic is explained fairly quickly compared to other tutorials. Next comes the part of handling class imbalance or detection of fraudulent transactions. With the techniques explained in this video, this step also takes a fairly short amount of time to understand.

Decision Tree, which is the next step, might be one of the key aspects of the whole project. It is the simplest and yet the most effective models for classification and here it gives results of 89% accuracy. This is impressive because when the total cost of fraud lies in billions of USD, just an accuracy of 0.1% can save 1 million USD. Because of its interpretability, it is seen as the most important step in the entire project.

After that, the video follows into building a random forest model which increases the accuracy rate to 90.3%. The results obtained in this video tutorial has an accuracy level exceeding that of most other models. The results are globally competitive exceeding others by 3–7%.

Conclusion

With so many tutorials out there, it might be a little hard to pick the course you want to take. Having a video tutorial that explains the functions of machine learning with a live example helps in comprehending the topic a lot better. And the accuracy rate in this video gives strong testimony to the quality of the tutorial and content involved in this course.

If you are impressed with this video, you can check out more such tutorials on this channel. There are video tutorials pertaining to numerous more topics from JavaScript, Ethical Hacking, MongoDB, AI, deep learning, MERN full-stack and many more. Stay updated on fresh tutorials by subscribing to the channel.

Learning in Artificial Intelligence - Great Learning

Learning in Artificial Intelligence - Great Learning

What is Artificial Intelligence (AI)? AI is the ability of a machine to think like human, learn and perform tasks like a human. Know the future of AI, Examples of AI and who provides the course of Artificial Intelligence?

US and China are massively investing in Artificial Intelligence which create a promising career in the field. One of the first steps to a successful artificial Intelligence career is to learn the basics around the domain. Articles and Guides are your opening friends towards a successful AI Career. Read on to know more.

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Artificial Intelligence vs. Machine Learning vs. Deep Learning. We are going to discuss we difference between Artificial Intelligence, Machine Learning, and Deep Learning

We are going to discuss we difference between Artificial Intelligence, Machine Learning, and Deep Learning

Furthermore, we will address the question of why Deep Learning as a young emerging field is far superior to traditional Machine Learning

Artificial Intelligence, Machine Learning, and Deep Learning are popular buzzwords that everyone seems to use nowadays.

But still, there is a big misconception among many people about the meaning of these terms.

In the worst case, one may think that these terms describe the same thing — which is simply false.

A large number of companies claim nowadays to incorporate some kind of “ Artificial Intelligence” (AI) in their applications or services.

But artificial intelligence is only a broader term that describes applications when a machine mimics “ cognitive “ functions that humans associate with other human minds, such as “learning” and “problem-solving”.

On a lower level, an AI can be only a programmed rule that determines the machine to behave in a certain way in certain situations. So basically Artificial Intelligence can be nothing more than just a bunch of if-else statements.

An if-else statement is a simple rule explicitly programmed by a human. Consider a very abstract, simple example of a robot who is moving on a road. A possible programmed rule for that robot could look as follows:

Instead, when speaking of Artificial Intelligence it's only worthwhile to consider two different approaches: Machine Learning and Deep Learning. Both are subfields of Artificial Intelligence

Machine Learning vs Deep Learning

Now that we now better understand what Artificial Intelligence means we can take a closer look at Machine Learning and Deep Learning and make a clearer distinguishment between these two.

Machine Learning incorporates “ classical” algorithms for various kinds of tasks such as clustering, regression or classification. Machine Learning algorithms must be trained on data. The more data you provide to your algorithm, the better it gets.

The “training” part of a Machine Learning model means that this model tries to optimize along a certain dimension. In other words, the Machine Learning models try to minimize the error between their predictions and the actual ground truth values.

For this we must define a so-called error function, also called a loss-function or an objective function … because after all the model has an objective. This objective could be for example classification of data into different categories (e.g. cat and dog pictures) or prediction of the expected price of a stock in the near future.

When someone says they are working with a machine-learning algorithm, you can get to the gist of its value by asking: What’s the objective function?

At this point, you may ask: How do we minimize the error?

One way would be to compare the prediction of the model with the ground truth value and adjust the parameters of the model in a way so that next time, the error between these two values is smaller. This is repeated again and again and again.

Thousands and millions of times, until the parameters of the model that determine the predictions are so good, that the difference between the predictions of the model and the ground truth labels are as small as possible.

In short machine learning models are optimization algorithms. If you tune them right, they minimize their error by guessing and guessing and guessing again.

Machine Learning is old…

The basic definition of machine learning is:

Algorithms that analyze data, learn from it and make informed decisions based on the learned insights.

Machine learning leads to a variety of automated tasks. It affects virtually every industry — from IT security malware search, to weather forecasting, to stockbrokers looking for cheap trades. Machine learning requires complex math and a lot of coding to finally get the desired functions and results.

Machine learning algorithms need to be trained on large amounts of data.
The more data you provide for your algorithm, the better it gets.

Machine Learning is a pretty old field and incorporates methods and algorithms that have been around for dozens of years, some of them since as early as the sixties.

These classic algorithms include algorithms such as the so-called Naive Bayes Classifier and the Support Vector Machines. Both are often used in the classification of data.

In addition to the classification, there are also cluster analysis algorithms such as the well-known K-Means and the tree-based clustering. To reduce the dimensionality of data and gain more insight into its nature, machine learning uses methods such as principal component analysis and tSNE.

Deep Learning — The next big Thing

Now let’s focus on the essential thing that is at stake here. On deep learning.
Deep Learning is a very young field of artificial intelligence based on artificial neural networks.

Again, deep learning can be seen as a part of machine learning because deep learning algorithms also need data to learn how to solve problems. Therefore, the terms of machine learning and deep learning are often treated as the same. However, these systems have different capabilities.

Deep Learning uses a multi-layered structure of algorithms called the neural network:

It can be viewed again as a subfield of Machine Learning since Deep Learning algorithms also require data in order to learn to solve tasks. Although methods of Deep Learning are able to perform the same tasks as classic Machine Learning algorithms, it is not the other way round.

Artificial neural networks have unique capabilities that enable Deep Learning models to solve tasks that Machine Learning models could never solve.

All recent advances in intelligence are due to Deep Learning. Without Deep Learning we would not have self-driving cars, chatbots or personal assistants like Alexa and Siri. Google Translate app would remain primitive and Netflix would have no idea which movies or TV series we like or dislike.

We can even go so far as to say that the new industrial revolution is driven by artificial neural networks and Deep Learning. This is the best and closest approach to true machine intelligence we have so far. The reason is that Deep Learning has two major advantages over Machine Learning.

Why is Deep Learning better than Machine Learning?

Feature Extraction

The first advantage of Deep Learning over machine learning is the needlessness of the so-called Feature Extraction.

Long before deep learning was used, traditional machine learning methods were popular, such as Decision Trees, SVM, Naïve Bayes Classifier and Logistic Regression. These algorithms are also called “flat algorithms”.

Flat means here that these algorithms can not normally be applied directly to the raw data (such as .csv, images, text, etc.). We require a preprocessing step called Feature Extraction.

The result of Feature Extraction is an abstract representation of the given raw data that can now be used by these classic machine learning algorithms to perform a task. For example, the classification of the data into several categories or classes.

Feature Extraction is usually pretty complicated and requires detailed knowledge of the problem domain. This step must be adapted, tested and refined over several iterations for optimal results.

On the other side are the artificial neural networks. These do not require the step of feature extraction. The layers are able to learn an implicit representation of the raw data directly on their own.

Here, a more and more abstract and compressed representation of the raw data is produced over several layers of an artificial neural network. This compressed representation of the input data is then used to produce the result. The result can be, for example, the classification of the input data into different classes.

In other words, we can also say that the feature extraction step is already a part of the process that takes place in an artificial neural network. During the training process, this step is also optimized by the neural network to obtain the best possible abstract representation of the input data. This means that the models of deep learning thus require little to no manual effort to perform and optimize the feature extraction process.

For example, if you want to use a machine learning model to determine whether a particular image shows a car or not, we humans first need to identify the unique features of a car (shape, size, windows, wheels, etc.), extract these features and give them to the algorithm as input data. This way, the machine learning algorithm would perform a classification of the image. That is, in machine learning, a programmer must intervene directly in the classification process.

In the case of a deep learning model, the feature extraction step is completely unnecessary. The model would recognize these unique characteristics of a car and make correct predictions- completely without the help of a human.

In fact, this applies to every other task you’ll ever do with neural networks.
They just give the raw data to the neural network, the rest is done by the model.

The Era of Big Data…

The second huge advantage of Deep Learning and a key part in understanding why it’s becoming so popular is that it’s powered by massive amounts of data. The “Big Data Era” of technology will provide huge amounts of opportunities for new innovations in deep learning. To quote Andrew Ng, the chief scientist of China’s major search engine Baidu and one of the leaders of the Google Brain Project:

The analogy to deep learning is that the rocket engine is the deep learning models and the fuel is the huge amounts of data we can feed to these algorithms.

Deep Learning models scale better with a larger amount of data

Deep Learning models tend to increase their accuracy with the increasing amount of training data, where’s traditional machine learning models such as SVM and Naive Bayes classifier stop improving after a saturation point.

Special Announcement: We just released a free Course on Deep Learning!

I am the founder of DeepLearning Academy, an advanced Deep Learning education platform. We provide practical state-of-the-art Deep Learning education and mentoring to professionals and beginners.

Among our things we just released a free Introductory Course on Deep Learning with TensorFlow, where you can learn how to implement Neural Networks from Scratch for various use-cases using TensorFlow.

If you are interested in this topic, feel free to check it out ;)

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Learn the Difference between the most popular Buzzwords in today's tech. World — AI, Machine Learning and Deep Learning

In this article, we are going to discuss we difference between Artificial Intelligence, Machine Learning, and Deep Learning.

Furthermore, we will address the question of why Deep Learning as a young emerging field is far superior to traditional Machine Learning.

Artificial Intelligence, Machine Learning, and Deep Learning are popular buzzwords that everyone seems to use nowadays.

But still, there is a big misconception among many people about the meaning of these terms.

In the worst case, one may think that these terms describe the same thing — which is simply false.

A large number of companies claim nowadays to incorporate some kind of “ Artificial Intelligence” (AI) in their applications or services.

But artificial intelligence is only a broader term that describes applications when a machine mimics “ cognitive “ functions that humans associate with other human minds, such as “learning” and “problem-solving”.

On a lower level, an AI can be only a programmed rule that determines the machine to behave in a certain way in certain situations. So basically Artificial Intelligence can be nothing more than just a bunch of if-else statements.

An if-else statement is a simple rule explicitly programmed by a human. Consider a very abstract, simple example of a robot who is moving on a road. A possible programmed rule for that robot could look as follows:

Instead, when speaking of Artificial Intelligence it's only worthwhile to consider two different approaches: Machine Learning and Deep Learning. Both are subfields of Artificial Intelligence

Machine Learning vs Deep Learning

Now that we now better understand what Artificial Intelligence means we can take a closer look at Machine Learning and Deep Learning and make a clearer distinguishment between these two.

Machine Learning incorporates “ classical” algorithms for various kinds of tasks such as clustering, regression or classification. Machine Learning algorithms must be trained on data. The more data you provide to your algorithm, the better it gets.

The “training” part of a Machine Learning model means that this model tries to optimize along a certain dimension. In other words, the Machine Learning models try to minimize the error between their predictions and the actual ground truth values.

For this we must define a so-called error function, also called a loss-function or an objective function … because after all the model has an objective. This objective could be for example classification of data into different categories (e.g. cat and dog pictures) or prediction of the expected price of a stock in the near future.

When someone says they are working with a machine-learning algorithm, you can get to the gist of its value by asking: What’s the objective function?

At this point, you may ask: How do we minimize the error?

One way would be to compare the prediction of the model with the ground truth value and adjust the parameters of the model in a way so that next time, the error between these two values is smaller. This is repeated again and again and again.

Thousands and millions of times, until the parameters of the model that determine the predictions are so good, that the difference between the predictions of the model and the ground truth labels are as small as possible.

In short machine learning models are optimization algorithms. If you tune them right, they minimize their error by guessing and guessing and guessing again.

Machine Learning is old…

Machine Learning is a pretty old field and incorporates methods and algorithms that have been around for dozens of years, some of them since as early as the sixties.

Some known methods of classification and prediction are the Naive Bayes Classifier and the Support Vector Machines. In addition to the classification, there are also clustering algorithms such as the well-known K-Means and tree-based clustering. To reduce the dimensionality of data to gain more insights about it’ nature methods such as Principal component analysis and tSNE are used.

Deep Learning — The next big Thing

Deep Learning, on the other hand, is a very young field of Artificial Intelligence that is powered by artificial neural networks.

It can be viewed again as a subfield of Machine Learning since Deep Learning algorithms also require data in order to learn to solve tasks. Although methods of Deep Learning are able to perform the same tasks as classic Machine Learning algorithms, it is not the other way round.

Artificial neural networks have unique capabilities that enable Deep Learning models to solve tasks that Machine Learning models could never solve.

All recent advances in intelligence are due to Deep Learning. Without Deep Learning we would not have self-driving cars, chatbots or personal assistants like Alexa and Siri. Google Translate app would remain primitive and Netflix would have no idea which movies or TV series we like or dislike.

We can even go so far as to say that the new industrial revolution is driven by artificial neural networks and Deep Learning. This is the best and closest approach to true machine intelligence we have so far. The reason is that Deep Learning has two major advantages over Machine Learning.

Why is Deep Learning better than Machine Learning?

The first advantage is the needlessness of Feature Extraction. What do I mean by this?

Well if you want to use a Machine Learning model to determine whether a given picture shows a car or not, we as humans, must first program the unique features of a car (shape, size, windows, wheels etc.) into the algorithm. This way the algorithm would know what to look after in the given pictures.

In the case of a Deep Learning model, is step is completely unnecessary. The model would recognize all the unique characteristics of a car by itself and make correct predictions.

In fact, the needlessness of feature extraction applies to any other task for a deep learning model. You simply give the neural network the raw data, the rest is done by the model. While for a machine learning model, you would need to perform additional steps, such as the already mentioned extraction of the features of the given data.

The second huge advantage of Deep Learning and a key part in understanding why it’s becoming so popular is that it’s powered by massive amounts of data. The “Big Data Era” of technology will provide huge amounts of opportunities for new innovations in deep learning. To quote Andrew Ng, the chief scientist of China’s major search engine Baidu and one of the leaders of the Google Brain Project:

The analogy to deep learning is that the rocket engine is the deep learning models and the fuel is the huge amounts of data we can feed to these algorithms.

Deep Learning models tend to increase their accuracy with the increasing amount of training data, where’s traditional machine learning models such as SVM and Naive Bayes classifier stop improving after a saturation point.