Pact JVM: Consumer-driven Contract Testing for Java & JVM

Pact-JVM

JVM implementation of the consumer driven contract library pact.

From the Ruby Pact website:

Define a pact between service consumers and providers, enabling "consumer driven contract" testing.

Pact provides an RSpec DSL for service consumers to define the HTTP requests they will make to a service provider and the HTTP responses they expect back. These expectations are used in the consumers specs to provide a mock service provider. The interactions are recorded, and played back in the service provider specs to ensure the service provider actually does provide the response the consumer expects.

This allows testing of both sides of an integration point using fast unit tests.

This gem is inspired by the concept of "Consumer driven contracts". See https://martinfowler.com/articles/consumerDrivenContracts.html for more information.

Read Getting started with Pact for more information on how to get going.

Tutorial (60 minutes)

Learn everything in Pact in 60 minutes: https://github.com/pact-foundation/pact-workshop-jvm-spring.

The workshop takes you through all of the key concepts of consumer and provider testing using a Spring boot application.

Documentation

Additional documentation can be found at docs.pact.io, in the Pact Wiki, and in the Pact-JVM wiki. Stack Overflow is also a good source of help, as is the Slack workspace.

Supported JDK and specification versions:

BranchSpecificationJDKKotlin VersionLatest VersionNotes
4.4.xV4 + plugins11+1.6.204.4.0-beta.3 
4.3.x masterV411+1.5.214.3.12Upgrade notes
4.1.xV38-121.3.724.1.38 

Previous versions (not actively supported)

BranchSpecificationJDKKotlin VersionScala VersionsLatest Version
4.2.xV4 (1)11-15 (2)1.4.32N/A4.2.21
4.0.xV38-121.3.71N/A4.0.10
3.6.xV381.3.712.123.6.15
3.5.xV381.1.4-22.12, 2.113.5.25
3.5.x-jre7V371.1.4-22.113.5.7-jre7.0
2.4.xV26N/A2.10, 2.112.4.20

Notes:

  • 1: V4 specification support is only partially implemented with 4.2.x
  • 2: v4.2.x may run on JDK 16, but the build for it does not.

NOTE: The JARs produced by this project have changed with 4.1.x to better align with Java 9 JPMS. The artefacts are now:

au.com.dius.pact:consumer
au.com.dius.pact.consumer:groovy
au.com.dius.pact.consumer:junit
au.com.dius.pact.consumer:junit5
au.com.dius.pact.consumer:java8
au.com.dius.pact.consumer:specs2_2.13
au.com.dius.pact:pact-jvm-server
au.com.dius.pact:provider
au.com.dius.pact.provider:scalatest_2.13
au.com.dius.pact.provider:spring
au.com.dius.pact.provider:maven
au.com.dius.pact:provider
au.com.dius.pact.provider:junit
au.com.dius.pact.provider:junit5
au.com.dius.pact.provider:scalasupport_2.13
au.com.dius.pact.provider:lein
au.com.dius.pact.provider:gradle
au.com.dius.pact.provider:specs2_2.13
au.com.dius.pact.provider:junit5spring
au.com.dius.pact.core:support
au.com.dius.pact.core:model
au.com.dius.pact.core:matchers
au.com.dius.pact.core:pactbroker

Service Consumers

Pact-JVM has a number of ways you can write your service consumer tests.

I Use Scala

You want to look at: pact4s or scala-pact

I Use Java

You want to look at: junit for JUnit 4 tests and junit5 for JUnit 5 tests. Also, if you are using Java 11 or above, there is an updated DSL for consumer tests.

NOTE: If you are using Java 8, there is no separate Java 8 support library anymore, see the above library.

I Use Groovy or Grails

You want to look at: groovy or junit

(Use Clojure I)

Clojure can call out to Java, so have a look at junit. For an example look at example_clojure_consumer_pact_test.clj.

I Use some other jvm language or test framework

You want to look at: Consumer

My Consumer interacts with a Message Queue

As part of the V3 pact specification, we have defined a new pact file for interactions with message queues. For an implementation of a Groovy consumer test with a message pact, have a look at PactMessageBuilderSpec.groovy.

Service Providers

Once you have run your consumer tests, you will have generated some Pact files. You can then verify your service providers with these files.

I am writing a provider and want to ...

verify pacts with SBT

You want to look at: pact4s or scala-pact

verify pacts with Gradle

You want to look at: pact gradle plugin

verify pacts with Maven

You want to look at: pact maven plugin

verify pacts with JUnit tests

You want to look at: junit provider support for JUnit 4 tests and junit5 for JUnit 5 tests

verify pacts with Leiningen

You want to look at: pact leiningen plugin

verify pacts with a Spring MVC project

Have a look at spring or Spring MVC Pact Test Runner (Not maintained).

I want to verify pacts but don't want to use sbt or gradle or leiningen

You want to look at: provider

verify interactions with a message queue

As part of the V3 pact specification, we have defined a new pact file for interactions with message queues. The Gradle pact plugin supports a mechanism where you can verify V3 message pacts, have a look at pact gradle plugin. The JUnit pact library also supports verification of V3 message pacts, have a look at junit.

I Use Ruby or Go or something else

The pact-jvm libraries are pure jvm technologies and do not have any native dependencies.

However, if you have a ruby provider, the json produced by this library is compatible with the ruby pact library. You'll want to look at: Ruby Pact.

For .Net, there is Pact-net.

For JS, there is Pact-JS.

For Go, there is Pact-go.

For Rust, there is Pact-Rust.

Have a look at implementations in other languages.

I Use something completely different

There's a limit to how much we can help, however check out pact-jvm-server

How do I transport my pacts from consumers to providers?

You want to look at: Pact Broker

Which is a project that aims at providing tooling to coordinate pact generation and delivery between projects.

I want to contribute

Documentation for contributors is here.

Test Analytics

We are tracking anonymous analytics to gather important usage statistics like JVM version and operating system. To disable tracking, set the 'pact_do_not_track' system property or environment variable to 'true'.

Contact

Links

Download details:

Author: pact-foundation
Source code: https://github.com/pact-foundation/pact-jvm
License: Apache-2.0 license

#java #testing #jvm

What is GEEK

Buddha Community

Pact JVM: Consumer-driven Contract Testing for Java & JVM
Joseph  Murray

Joseph Murray

1621492530

7 Test Frameworks To Follow in 2021 for Java/Fullstack Developers

It is time to learn new test frameworks in 2021 to improve your code quality and decrease the time of your testing phase. Let’s explore 6 options for devs.

It is time to learn new test frameworks to improve your code quality and decrease the time of your testing phase. I have selected six testing frameworks that sound promising. Some have existed for quite a long time but I have not heard about them before.

At the end of the article, please tell me what you think about them and what your favorite ones are.

Robot Framework

Robot Framework is a generic open-source automation framework. It can be used for test automation and robotic process automation (RPA).

Robot Framework is open and extensible and can be integrated with virtually any other tool to create powerful and flexible automation solutions. Being open-source also means that Robot Framework is free to use without licensing costs.

The RoboFramework is a framework** to write test cases and automation processes.** It means that it may replace** your classic combo Selenium + Cucumber + Gherkins**. To be more precise, the Cucumber Gherkins custom implementation you wrote will be handled by RoboFramework and Selenium invoked below.

For the Java developers, this framework can be executed with Maven or Gradle (but less mature for the latter solution).

#java #testing #test #java framework #java frameworks #testing and developing #java testing #robot framework #test framework #2021

Tyrique  Littel

Tyrique Littel

1600135200

How to Install OpenJDK 11 on CentOS 8

What is OpenJDK?

OpenJDk or Open Java Development Kit is a free, open-source framework of the Java Platform, Standard Edition (or Java SE). It contains the virtual machine, the Java Class Library, and the Java compiler. The difference between the Oracle OpenJDK and Oracle JDK is that OpenJDK is a source code reference point for the open-source model. Simultaneously, the Oracle JDK is a continuation or advanced model of the OpenJDK, which is not open source and requires a license to use.

In this article, we will be installing OpenJDK on Centos 8.

#tutorials #alternatives #centos #centos 8 #configuration #dnf #frameworks #java #java development kit #java ee #java environment variables #java framework #java jdk #java jre #java platform #java sdk #java se #jdk #jre #open java development kit #open source #openjdk #openjdk 11 #openjdk 8 #openjdk runtime environment

Contract Testing Strategy: Producer-Driven or Consumer-Driven

Depending on the tool/framework that we take as a reference, the concept of “agreement between consumer  and producer ” is called pact  or contract , but they are just different names for the same concept: a specification of what the requests and responses should be like to consume the services offered by the producer .

#testing #contract testing #consumer-driven contracts #contract producer

Pact JVM: Consumer-driven Contract Testing for Java & JVM

Pact-JVM

JVM implementation of the consumer driven contract library pact.

From the Ruby Pact website:

Define a pact between service consumers and providers, enabling "consumer driven contract" testing.

Pact provides an RSpec DSL for service consumers to define the HTTP requests they will make to a service provider and the HTTP responses they expect back. These expectations are used in the consumers specs to provide a mock service provider. The interactions are recorded, and played back in the service provider specs to ensure the service provider actually does provide the response the consumer expects.

This allows testing of both sides of an integration point using fast unit tests.

This gem is inspired by the concept of "Consumer driven contracts". See https://martinfowler.com/articles/consumerDrivenContracts.html for more information.

Read Getting started with Pact for more information on how to get going.

Tutorial (60 minutes)

Learn everything in Pact in 60 minutes: https://github.com/pact-foundation/pact-workshop-jvm-spring.

The workshop takes you through all of the key concepts of consumer and provider testing using a Spring boot application.

Documentation

Additional documentation can be found at docs.pact.io, in the Pact Wiki, and in the Pact-JVM wiki. Stack Overflow is also a good source of help, as is the Slack workspace.

Supported JDK and specification versions:

BranchSpecificationJDKKotlin VersionLatest VersionNotes
4.4.xV4 + plugins11+1.6.204.4.0-beta.3 
4.3.x masterV411+1.5.214.3.12Upgrade notes
4.1.xV38-121.3.724.1.38 

Previous versions (not actively supported)

BranchSpecificationJDKKotlin VersionScala VersionsLatest Version
4.2.xV4 (1)11-15 (2)1.4.32N/A4.2.21
4.0.xV38-121.3.71N/A4.0.10
3.6.xV381.3.712.123.6.15
3.5.xV381.1.4-22.12, 2.113.5.25
3.5.x-jre7V371.1.4-22.113.5.7-jre7.0
2.4.xV26N/A2.10, 2.112.4.20

Notes:

  • 1: V4 specification support is only partially implemented with 4.2.x
  • 2: v4.2.x may run on JDK 16, but the build for it does not.

NOTE: The JARs produced by this project have changed with 4.1.x to better align with Java 9 JPMS. The artefacts are now:

au.com.dius.pact:consumer
au.com.dius.pact.consumer:groovy
au.com.dius.pact.consumer:junit
au.com.dius.pact.consumer:junit5
au.com.dius.pact.consumer:java8
au.com.dius.pact.consumer:specs2_2.13
au.com.dius.pact:pact-jvm-server
au.com.dius.pact:provider
au.com.dius.pact.provider:scalatest_2.13
au.com.dius.pact.provider:spring
au.com.dius.pact.provider:maven
au.com.dius.pact:provider
au.com.dius.pact.provider:junit
au.com.dius.pact.provider:junit5
au.com.dius.pact.provider:scalasupport_2.13
au.com.dius.pact.provider:lein
au.com.dius.pact.provider:gradle
au.com.dius.pact.provider:specs2_2.13
au.com.dius.pact.provider:junit5spring
au.com.dius.pact.core:support
au.com.dius.pact.core:model
au.com.dius.pact.core:matchers
au.com.dius.pact.core:pactbroker

Service Consumers

Pact-JVM has a number of ways you can write your service consumer tests.

I Use Scala

You want to look at: pact4s or scala-pact

I Use Java

You want to look at: junit for JUnit 4 tests and junit5 for JUnit 5 tests. Also, if you are using Java 11 or above, there is an updated DSL for consumer tests.

NOTE: If you are using Java 8, there is no separate Java 8 support library anymore, see the above library.

I Use Groovy or Grails

You want to look at: groovy or junit

(Use Clojure I)

Clojure can call out to Java, so have a look at junit. For an example look at example_clojure_consumer_pact_test.clj.

I Use some other jvm language or test framework

You want to look at: Consumer

My Consumer interacts with a Message Queue

As part of the V3 pact specification, we have defined a new pact file for interactions with message queues. For an implementation of a Groovy consumer test with a message pact, have a look at PactMessageBuilderSpec.groovy.

Service Providers

Once you have run your consumer tests, you will have generated some Pact files. You can then verify your service providers with these files.

I am writing a provider and want to ...

verify pacts with SBT

You want to look at: pact4s or scala-pact

verify pacts with Gradle

You want to look at: pact gradle plugin

verify pacts with Maven

You want to look at: pact maven plugin

verify pacts with JUnit tests

You want to look at: junit provider support for JUnit 4 tests and junit5 for JUnit 5 tests

verify pacts with Leiningen

You want to look at: pact leiningen plugin

verify pacts with a Spring MVC project

Have a look at spring or Spring MVC Pact Test Runner (Not maintained).

I want to verify pacts but don't want to use sbt or gradle or leiningen

You want to look at: provider

verify interactions with a message queue

As part of the V3 pact specification, we have defined a new pact file for interactions with message queues. The Gradle pact plugin supports a mechanism where you can verify V3 message pacts, have a look at pact gradle plugin. The JUnit pact library also supports verification of V3 message pacts, have a look at junit.

I Use Ruby or Go or something else

The pact-jvm libraries are pure jvm technologies and do not have any native dependencies.

However, if you have a ruby provider, the json produced by this library is compatible with the ruby pact library. You'll want to look at: Ruby Pact.

For .Net, there is Pact-net.

For JS, there is Pact-JS.

For Go, there is Pact-go.

For Rust, there is Pact-Rust.

Have a look at implementations in other languages.

I Use something completely different

There's a limit to how much we can help, however check out pact-jvm-server

How do I transport my pacts from consumers to providers?

You want to look at: Pact Broker

Which is a project that aims at providing tooling to coordinate pact generation and delivery between projects.

I want to contribute

Documentation for contributors is here.

Test Analytics

We are tracking anonymous analytics to gather important usage statistics like JVM version and operating system. To disable tracking, set the 'pact_do_not_track' system property or environment variable to 'true'.

Contact

Links

Download details:

Author: pact-foundation
Source code: https://github.com/pact-foundation/pact-jvm
License: Apache-2.0 license

#java #testing #jvm

Tamia  Walter

Tamia Walter

1596754901

Testing Microservices Applications

The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.

This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?

A Brave New World

Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.

Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.

Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.

Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.

The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.

Keep in mind that there are additional things to focus on when testing microservices.

  • Microservices rely on network communications to talk to each other, so network reliability and requirements must be part of the testing.
  • Automation and infrastructure elements are now added as codes, and you have to make sure that they also run properly when microservices are pushed through the pipeline
  • While containerization is universal, you still have to pay attention to specific dependencies and create a testing strategy that allows for those dependencies to be included

Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.

Contract Testing as an Approach

As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.

Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.

Ways to Test Microservices

It is easy to fall into the trap of making testing microservices complicated, but there are ways to avoid this problem. Testing microservices doesn’t have to be complicated at all when you have the right strategy in place.

There are several ways to test microservices too, including:

  • Unit testing: Which allows developers to test microservices in a granular way. It doesn’t limit testing to individual microservices, but rather allows developers to take a more granular approach such as testing individual features or runtimes.
  • Integration testing: Which handles the testing of microservices in an interactive way. Microservices still need to work with each other when they are deployed, and integration testing is a key process in making sure that they do.
  • End-to-end testing: Which⁠—as the name suggests⁠—tests microservices as a complete app. This type of testing enables the testing of features, UI, communications, and other components that construct the app.

What’s important to note is the fact that these testing approaches allow for asynchronous testing. After all, asynchronous development is what makes developing microservices very appealing in the first place. By allowing for asynchronous testing, you can also make sure that components or microservices can be updated independently to one another.

#blog #microservices #testing #caylent #contract testing #end-to-end testing #hoverfly #integration testing #microservices #microservices architecture #pact #testing #unit testing #vagrant #vcr