Basil  Rasool

Basil Rasool

1623213346

Building a Navigation with Figma's BETA Interactive Components

Today, we’re going to step into the world of UI/UX design and demonstrate a (currently) beta feature in Figma: interactive components. They make the life of a prototyper much simpler than the current status quo.

Apply for the beta here:

https://docs.google.com/forms/d/e/1FA…

https://figma.com

Subscribe: https://www.youtube.com/c/DesignCourse/featured

#figma

What is GEEK

Buddha Community

Building a Navigation with Figma's BETA Interactive Components
Corey Brooks

Corey Brooks

1657254050

Top 9+ Common CSS Mistakes To Avoid

In this tutorial, we'll summarise what the top 9+ CSS mistakes are and how to avoid them.

Top 9+ Common CSS Mistakes To Avoid

It’s easy to get tripped up with CSS. Here are some common CSS mistakes we all make.

1. Not Using a Proper CSS Reset

Web browsers are our fickle friends. Their inconsistencies can make any developer want to tear their hair out. But at the end of the day, they’re what will present your website, so you better do what you have to do to please them.

One of the sillier things browsers do is provide default styling for HTML elements. I suppose you can’t really blame them: what if a “webmaster” chose not to style their page? There has to be a fallback mechanism for people who choose not to use CSS.

In any case, there’s rarely a case of two browsers providing identical default styling, so the only real way to make sure your styles are effective is to use a CSS reset. What a CSS reset entails is resetting (or, rather, setting) all the styles of all the HTML elements to a predictable baseline value. The beauty of this is that once you include a CSS reset effectively, you can style all the elements on your page as if they were all the same to start with.

It’s a blank slate, really. There are many CSS reset codebases on the web that you can incorporate into your work. I personally use a modified version of the popular Eric Meyer reset and Six Revisions uses a modified version of YUI Reset CSS.

You can also build your own reset if you think it would work better. What many of us do is utilizing a simple universal selector margin/padding reset.

* { margin:0; padding:0; } 

Though this works, it’s not a full reset.

You also need to reset, for example, borders, underlines, and colors of elements like list items, links, and tables so that you don’t run into unexpected inconsistencies between web browsers. Learn more about resetting your styles via this guide: Resetting Your Styles with CSS Reset.

2. Over-Qualifying Selectors

Being overly specific when selecting elements to style is not good practice. The following selector is a perfect example of what I’m talking about:

ul#navigation li a { ... } 

Typically the structure of a primary navigation list is a <ul> (usually with an ID like #nav or #navigation) then a few list items (<li>) inside of it, each with its own <a> tag inside it that links to other pages.

This HTML structure is perfectly correct, but the CSS selector is really what I’m worried about. First things first: There’s no reason for the ul before #navigation as an ID is already the most specific selector. Also, you don’t have to put li in the selector syntax because all the a elements inside the navigation are inside list items, so there’s no reason for that bit of specificity.

Thus, you can condense that selector as:

#navigation a { ... } 

This is an overly simplistic example because you might have nested list items that you want to style differently (i.e. #navigation li a is different from #navigation li ul li a); but if you don’t, then there’s no need for the excessive specificity.

I also want to talk about the need for an ID in this situation. Let’s assume for a minute that this navigation list is inside a header div (#header). Let us also assume that you will have no other unordered list in the header besides the navigation list.

If that is the case, we can even remove the ID from the unordered list in our HTML markup, and then we can select it in CSS as such:

#header ul a { ... } 

Here’s what I want you to take away from this example: Always write your CSS selectors with the very minimum level of specificity necessary for it to work. Including all that extra fluff may make it look more safe and precise, but when it comes to CSS selectors, there are only two levels of specificity: specific, and not specific enough.

3. Not Using Shorthand Properties

Take a look at the following property list:

#selector { margin-top: 50px; margin-right: 0; margin-bottom: 50px; margin-left 0; }

What is wrong with this picture? I hope that alarm bells are ringing in your head as you notice how much we’re repeating ourselves. Fortunately, there is a solution, and it’s using CSS shorthand properties.

The following has the same effect as the above style declaration, but we’ve reduced our code by three lines.

#selector { margin: 50px 0; }

Check out this list of properties that deals with font styles:

font-family: Helvetica; font-size: 14px; font-weight: bold; line-height: 1.5;

We can condense all that into one line:

font: bold 14px/1.5 Helvetica; 

We can also do this for background properties. The following:

background-image: url(background.png); background-repeat: repeat-y; background-position: center top;

Can be written in shorthand CSS as such:

background: url(background.png) repeat-y center top; 

4. Using 0px instead of 0

Say you want to add a 20px margin to the bottom of an element. You might use something like this:

#selector { margin: 20px 0px 20px 0px; } 

Don’t. This is excessive.

There’s no need to include the px after 0. While this may seem like I’m nitpicking and that it may not seem like much, when you’re working with a huge file, removing all those superfluous px can reduce the size of your file (which is never a bad thing).

5. Using Color Names Instead of Hexadecimal

Declaring red for color values is the lazy man’s #FF0000. By saying:

color: red;

You’re essentially saying that the browser should display what it thinks red is. If you’ve learned anything from making stuff function correctly in all browsers — and the hours of frustration you’ve accumulated because of a stupid list-bullet misalignment that can only be seen in IE7 — it’s that you should never let the browser decide how to display your web pages.

Instead, you should go to the effort to find the actual hex value for the color you’re trying to use. That way, you can make sure it’s the same color displayed across all browsers. You can use a color cheatsheet that provides a preview and the hex value of a color.

This may seem trivial, but when it comes to CSS, it’s the tiny things that often lead to the big gotchas.

6. Redundant Selectors

My process for writing styles is to start with all the typography, and then work on the structure, and finally on styling all the colors and backgrounds. That’s what works for me. Since I don’t focus on just one element at a time, I commonly find myself accidentally typing out a redundant style declaration.

I always do a final check after I’m done so that I can make sure that I haven’t repeated any selectors; and if I have, I’ll merge them. This sort of mistake is fine to make while you’re developing, but just try to make sure they don’t make it into production.

7. Redundant Properties

Similar to the one above, I often find myself having to apply the same properties to multiple selectors. This could be styling an <h5> in the header to look exactly like the <h6> in the footer, making the <pre>‘s and <blockquote>‘s the same size, or any number of things in between. In the final review of my CSS, I will look to make sure that I haven’t repeated too many properties.

For example, if I see two selectors doing the same thing, such as this:

#selector-1 { font-style: italic; color: #e7e7e7; margin: 5px; padding: 20px } .selector-2 { font-style: italic; color: #e7e7e7; margin: 5px; padding: 20px }

I will combine them, with the selectors separated by a comma (,):

#selector-1, .selector-2 { font-style: italic; color: #e7e7e7; margin: 5px; padding: 20px }

I hope you’re seeing the trend here: Try to be as terse and as efficient as possible. It pays dividends in maintenance time and page-load speed.

8. Not Providing Fallback Fonts

In a perfect world, every computer would always have every font you would ever want to use installed. Unfortunately, we don’t live in a perfect world. @font-face aside, web designers are pretty much limited to the few so called web-safe fonts (e.g.

Arial, Georgia, serif, etc.). There is a plus side, though. You can still use fonts like Helvetica that aren’t necessarily installed on every computer.

The secret lies in font stacks. Font stacks are a way for developers to provide fallback fonts for the browser to display if the user doesn’t have the preferred font installed. For example:

#selector { font-family: Helvetica; }

Can be expanded with fallback fonts as such:

#selector { font-family: Helvetica, Arial, sans-serif; }

Now, if the user doesn’t have Helvetica, they can see your site in Arial, and if that doesn’t work, it’ll just default to any sans-serif font installed.

By defining fallback fonts, you gain more control as to how your web pages are rendered.

9. Unnecessary Whitespace

When it comes to trying to reduce your CSS file sizes for performance, every space counts. When you’re developing, it’s OK to format your code in the way that you’re comfortable with. However, there is absolutely no reason not to take out excess characters (a process known as minification) when you actually push your project onto the web where the size of your files really counts.

Too many developers simply don’t minify their files before launching their websites, and I think that’s a huge mistake. Although it may not feel like it makes much of a difference, when you have huge CSS files

10. Not Organizing Your CSS in a Logical Way

When you’re writing CSS, do yourself a favor and organize your code. Through comments, you can insure that the next time you come to make a change to a file you’ll still be able to navigate it. 

I personally like to organize my styles by how the HTML that I’m styling is structured. This means that I have comments that distinguish the header, body, sidebar, and footer. A common CSS-authoring mistake I see is people just writing up their styles as soon as they think of them.

The next time you try to change something and can’t find the style declaration, you’ll be silently cursing yourself for not organizing your CSS well enough.

11. Using Only One Stylesheet for Everything

This one’s subjective, so bear with me while I give you my perspective. I am of the belief, as are others, that it is better to split stylesheets into a few different ones for big sites for easier maintenance and for better modularity. Maybe I’ll have one for a CSS reset, one for IE-specific fixes, and so on.

By organizing CSS into disparate stylesheets, I’ll know immediately where to find a style I want to change. You can do this by importing all the stylesheets into a stylesheet like so:

@import url("reset.css"); @import url("ie.css"); @import url("typography.css"); @import url("layout.css"); 

Let me stress, however, that this is what works for me and many other developers. You may prefer to squeeze them all in one file, and that’s okay; there’s nothing wrong with that.

But if you’re having a hard time maintaining a single file, try splitting your CSS up.

12. Not Providing a Print Stylesheet

In order to style your site on pages that will be printed, all you have to do is utilize and include a print stylesheet. It’s as easy as:

<link rel="stylesheet" href="print.css" media="print" /> 

Using a stylesheet for print allows you to hide elements you don’t want printed (such as your navigation menu), reset the background color to white, provide alternative typography for paragraphs so that it’s better suited on a piece of paper, and so forth. The important thing is that you think about how your page will look when printed.

Too many people just don’t think about it, so their sites will simply print the same way you see them on the screen.


I Made These 2 BEGINNER CSS Mistakes

No matter how long you've been writing code, it's always a good time to revisit the basics. While working on a project the other day, I made 2 beginner mistakes with the CSS I was writing. I misunderstood both CSS specificity and how transform:scale affects the DOM!

Stack Overflow about transform:scale - https://stackoverflow.com/questions/32835144/css-transform-scale-does-not-change-dom-size 
CSS Specificity - https://www.w3schools.com/css/css_specificity.asp 

#css 

Basil  Rasool

Basil Rasool

1623213346

Building a Navigation with Figma's BETA Interactive Components

Today, we’re going to step into the world of UI/UX design and demonstrate a (currently) beta feature in Figma: interactive components. They make the life of a prototyper much simpler than the current status quo.

Apply for the beta here:

https://docs.google.com/forms/d/e/1FA…

https://figma.com

Subscribe: https://www.youtube.com/c/DesignCourse/featured

#figma

Figma design kit built to integrate with Tailwind CSS

Hey everyone ✌🏻

Together with my friend, we developed a design kit in Figma specifically to be integrated with Tailwind CSS, a trending new utility first CSS framework.

You can find more information about the Tailwind CSS Figma design kit on Flowbite.

It’s open source 💙

#tailwind #figma #tailwind-figma #tailwind-ui #figma-ui #figma-ui-kit

The Best Way to Build a Chatbot in 2021

A useful tool several businesses implement for answering questions that potential customers may have is a chatbot. Many programming languages give web designers several ways on how to make a chatbot for their websites. They are capable of answering basic questions for visitors and offer innovation for businesses.

With the help of programming languages, it is possible to create a chatbot from the ground up to satisfy someone’s needs.

Plan Out the Chatbot’s Purpose

Before building a chatbot, it is ideal for web designers to determine how it will function on a website. Several chatbot duties center around fulfilling customers’ needs and questions or compiling and optimizing data via transactions.

Some benefits of implementing chatbots include:

  • Generating leads for marketing products and services
  • Improve work capacity when employees cannot answer questions or during non-business hours
  • Reducing errors while providing accurate information to customers or visitors
  • Meeting customer demands through instant communication
  • Alerting customers about their online transactions

Some programmers may choose to design a chatbox to function through predefined answers based on the questions customers may input or function by adapting and learning via human input.

#chatbots #latest news #the best way to build a chatbot in 2021 #build #build a chatbot #best way to build a chatbot

Riyad Amin

Riyad Amin

1571046022

Build Your Own Cryptocurrency Blockchain in Python

Cryptocurrency is a decentralized digital currency that uses encryption techniques to regulate the generation of currency units and to verify the transfer of funds. Anonymity, decentralization, and security are among its main features. Cryptocurrency is not regulated or tracked by any centralized authority, government, or bank.

Blockchain, a decentralized peer-to-peer (P2P) network, which is comprised of data blocks, is an integral part of cryptocurrency. These blocks chronologically store information about transactions and adhere to a protocol for inter-node communication and validating new blocks. The data recorded in blocks cannot be altered without the alteration of all subsequent blocks.

In this article, we are going to explain how you can create a simple blockchain using the Python programming language.

Here is the basic blueprint of the Python class we’ll use for creating the blockchain:

class Block(object):
    def __init__():
        pass
    #initial structure of the block class 
    def compute_hash():
        pass
    #producing the cryptographic hash of each block 
  class BlockChain(object):
    def __init__(self):
    #building the chain
    def build_genesis(self):
        pass
    #creating the initial block
    def build_block(self, proof_number, previous_hash):
        pass
    #builds new block and adds to the chain
   @staticmethod
    def confirm_validity(block, previous_block):
        pass
    #checks whether the blockchain is valid
    def get_data(self, sender, receiver, amount):
        pass
    # declares data of transactions
    @staticmethod
    def proof_of_work(last_proof):
        pass
    #adds to the security of the blockchain
    @property
    def latest_block(self):
        pass
    #returns the last block in the chain

Now, let’s explain how the blockchain class works.

Initial Structure of the Block Class

Here is the code for our initial block class:

import hashlib
import time
class Block(object):
    def __init__(self, index, proof_number, previous_hash, data, timestamp=None):
        self.index = index
        self.proof_number = proof_number
        self.previous_hash = previous_hash
        self.data = data
        self.timestamp = timestamp or time.time()
    @property
    def compute_hash(self):
        string_block = "{}{}{}{}{}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
        return hashlib.sha256(string_block.encode()).hexdigest()

As you can see above, the class constructor or initiation method ( init()) above takes the following parameters:

self — just like any other Python class, this parameter is used to refer to the class itself. Any variable associated with the class can be accessed using it.

index — it’s used to track the position of a block within the blockchain.

previous_hash — it used to reference the hash of the previous block within the blockchain.

data—it gives details of the transactions done, for example, the amount bought.

timestamp—it inserts a timestamp for all the transactions performed.

The second method in the class, compute_hash , is used to produce the cryptographic hash of each block based on the above values.

As you can see, we imported the SHA-256 algorithm into the cryptocurrency blockchain project to help in getting the hashes of the blocks.

Once the values have been placed inside the hashing module, the algorithm will return a 256-bit string denoting the contents of the block.

So, this is what gives the blockchain immutability. Since each block will be represented by a hash, which will be computed from the hash of the previous block, corrupting any block in the chain will make the other blocks have invalid hashes, resulting in breakage of the whole blockchain network.

Building the Chain

The whole concept of a blockchain is based on the fact that the blocks are “chained” to each other. Now, we’ll create a blockchain class that will play the critical role of managing the entire chain.

It will keep the transactions data and include other helper methods for completing various roles, such as adding new blocks.

Let’s talk about the helper methods.

Adding the Constructor Method

Here is the code:

class BlockChain(object):
    def __init__(self):
        self.chain = []
        self.current_data = []
        self.nodes = set()
        self.build_genesis()

The init() constructor method is what instantiates the blockchain.

Here are the roles of its attributes:

self.chain — this variable stores all the blocks.

self.current_data — this variable stores information about the transactions in the block.

self.build_genesis() — this method is used to create the initial block in the chain.

Building the Genesis Block

The build_genesis() method is used for creating the initial block in the chain, that is, a block without any predecessors. The genesis block is what represents the beginning of the blockchain.

To create it, we’ll call the build_block() method and give it some default values. The parameters proof_number and previous_hash are both given a value of zero, though you can give them any value you desire.

Here is the code:

def build_genesis(self):
        self.build_block(proof_number=0, previous_hash=0)
 def build_block(self, proof_number, previous_hash):
        block = Block(
            index=len(self.chain),
            proof_number=proof_number,
            previous_hash=previous_hash,
            data=self.current_data
        )
        self.current_data = []  
        self.chain.append(block)
        return block

Confirming Validity of the Blockchain

The confirm_validity method is critical in examining the integrity of the blockchain and making sure inconsistencies are lacking.

As explained earlier, hashes are pivotal for realizing the security of the cryptocurrency blockchain, because any slight alteration in an object will result in the creation of an entirely different hash.

Thus, the confirm_validity method utilizes a series of if statements to assess whether the hash of each block has been compromised.

Furthermore, it also compares the hash values of every two successive blocks to identify any anomalies. If the chain is working properly, it returns true; otherwise, it returns false.

Here is the code:

def confirm_validity(block, previous_block):
        if previous_block.index + 1 != block.index:
            return False
        elif previous_block.compute_hash != block.previous_hash:
            return False
        elif block.timestamp <= previous_block.timestamp:
            return False
        return True

Declaring Data of Transactions

The get_data method is important in declaring the data of transactions on a block. This method takes three parameters (sender’s information, receiver’s information, and amount) and adds the transaction data to the self.current_data list.

Here is the code:

def get_data(self, sender, receiver, amount):
        self.current_data.append({
            'sender': sender,
            'receiver': receiver,
            'amount': amount
        })
        return True

Effecting the Proof of Work

In blockchain technology, Proof of Work (PoW) refers to the complexity involved in mining or generating new blocks on the blockchain.

For example, the PoW can be implemented by identifying a number that solves a problem whenever a user completes some computing work. Anyone on the blockchain network should find the number complex to identify but easy to verify — this is the main concept of PoW.

This way, it discourages spamming and compromising the integrity of the network.

In this article, we’ll illustrate how to include a Proof of Work algorithm in a blockchain cryptocurrency project.

Finalizing With the Last Block

Finally, the latest_block() helper method is used for retrieving the last block on the network, which is actually the current block.

Here is the code:

def latest_block(self):
        return self.chain[-1]

Implementing Blockchain Mining

Now, this is the most exciting section!

Initially, the transactions are kept in a list of unverified transactions. Mining refers to the process of placing the unverified transactions in a block and solving the PoW problem. It can be referred to as the computing work involved in verifying the transactions.

If everything has been figured out correctly, a block is created or mined and joined together with the others in the blockchain. If users have successfully mined a block, they are often rewarded for using their computing resources to solve the PoW problem.

Here is the mining method in this simple cryptocurrency blockchain project:

def block_mining(self, details_miner):
            self.get_data(
            sender="0", #it implies that this node has created a new block
            receiver=details_miner,
            quantity=1, #creating a new block (or identifying the proof number) is awarded with 1
        )
        last_block = self.latest_block
        last_proof_number = last_block.proof_number
        proof_number = self.proof_of_work(last_proof_number)
        last_hash = last_block.compute_hash
        block = self.build_block(proof_number, last_hash)
        return vars(block)

Summary

Here is the whole code for our crypto blockchain class in Python:

import hashlib
import time
class Block(object):
    def __init__(self, index, proof_number, previous_hash, data, timestamp=None):
        self.index = index
        self.proof_number = proof_number
        self.previous_hash = previous_hash
        self.data = data
        self.timestamp = timestamp or time.time()
    @property
    def compute_hash(self):
        string_block = "{}{}{}{}{}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
        return hashlib.sha256(string_block.encode()).hexdigest()
    def __repr__(self):
        return "{} - {} - {} - {} - {}".format(self.index, self.proof_number, self.previous_hash, self.data, self.timestamp)
class BlockChain(object):
    def __init__(self):
        self.chain = []
        self.current_data = []
        self.nodes = set()
        self.build_genesis()
    def build_genesis(self):
        self.build_block(proof_number=0, previous_hash=0)
    def build_block(self, proof_number, previous_hash):
        block = Block(
            index=len(self.chain),
            proof_number=proof_number,
            previous_hash=previous_hash,
            data=self.current_data
        )
        self.current_data = []  
        self.chain.append(block)
        return block
    @staticmethod
    def confirm_validity(block, previous_block):
        if previous_block.index + 1 != block.index:
            return False
        elif previous_block.compute_hash != block.previous_hash:
            return False
        elif block.timestamp <= previous_block.timestamp:
            return False
        return True
    def get_data(self, sender, receiver, amount):
        self.current_data.append({
            'sender': sender,
            'receiver': receiver,
            'amount': amount
        })
        return True        
    @staticmethod
    def proof_of_work(last_proof):
        pass
    @property
    def latest_block(self):
        return self.chain[-1]
    def chain_validity(self):
        pass        
    def block_mining(self, details_miner):       
        self.get_data(
            sender="0", #it implies that this node has created a new block
            receiver=details_miner,
            quantity=1, #creating a new block (or identifying the proof number) is awared with 1
        )
        last_block = self.latest_block
        last_proof_number = last_block.proof_number
        proof_number = self.proof_of_work(last_proof_number)
        last_hash = last_block.compute_hash
        block = self.build_block(proof_number, last_hash)
        return vars(block)  
    def create_node(self, address):
        self.nodes.add(address)
        return True
    @staticmethod
    def get_block_object(block_data):        
        return Block(
            block_data['index'],
            block_data['proof_number'],
            block_data['previous_hash'],
            block_data['data'],
            timestamp=block_data['timestamp']
        )
blockchain = BlockChain()
print("GET READY MINING ABOUT TO START")
print(blockchain.chain)
last_block = blockchain.latest_block
last_proof_number = last_block.proof_number
proof_number = blockchain.proof_of_work(last_proof_number)
blockchain.get_data(
    sender="0", #this means that this node has constructed another block
    receiver="LiveEdu.tv", 
    amount=1, #building a new block (or figuring out the proof number) is awarded with 1
)
last_hash = last_block.compute_hash
block = blockchain.build_block(proof_number, last_hash)
print("WOW, MINING HAS BEEN SUCCESSFUL!")
print(blockchain.chain)

Now, let’s try to run our code to see if we can generate some digital coins…

Wow, it worked!

Conclusion

That is it!

We hope that this article has assisted you to understand the underlying technology that powers cryptocurrencies such as Bitcoin and Ethereum.

We just illustrated the basic ideas for making your feet wet in the innovative blockchain technology. The project above can still be enhanced by incorporating other features to make it more useful and robust.

Learn More

Thanks for reading !

Do you have any comments or questions? Please share them below.

#python #cryptocurrency