1669365780
To change an HTML element’s class
attribute value using JavaScript, you can use either the className
or the classList
property provided for every single HTML element.
This tutorial will help you learn how to use both methods, starting from the className
property.
The className
property allows you to fetch an HTML element’s class
attribute value as a string.
Here’s an example of how className
property works:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
console.log(paragraph.className); // "red"
</script>
</body>
Now that you know how the className
property works, you can change the class
value of an element by assigning a new value to the property as follows:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
paragraph.className = "yellow blue";
console.log(paragraph.className); // "yellow blue"
</script>
</body>
Using the className
property allows you to change the class
attribute value, but you need to add the previous value manually if you want to keep it.
For example, to keep the class "red"
from the <p>
element above and adds a new class named "font-large"
, you need to assign both classes as follows:
const paragraph = document.getElementById("header");
paragraph.className = "red font-large";
Even though the "red"
class is already present, you still need to assign it again, creating a small redundancy in your code.
To avoid this kind of redundancy, you can use the classList
property instead.
The classList
property is a read-only property of an HTML element that returns the class
attribute value as an array. The property also provides several methods for you to manipulate the class
attribute value.
For example, to add new class names without removing the current value, you can use the classList.add()
method.
Using the same <p>
element example above, here’s how to add the "font-large"
class without removing the "red"
element:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
paragraph.classList.add("font-large");
console.log(paragraph.classList); // ["red", "font-large"]
</script>
</body>
When you want to remove an element’s class
attribute value, you can use the remove()
method, which allows you to remove()
class names as a comma-delimited string:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
paragraph.classList.add("font-large");
paragraph.classList.remove("red");
console.log(paragraph.classList); // ["font-large"]
</script>
</body>
For more information on classList
property you can read the following post:
JavaScript classList() property and methods explained
And that’s how you can change the class
attribute value using the className
or classList
property methods.
Original article source at: https://sebhastian.com/
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1632537859
Not babashka. Node.js babashka!?
Ad-hoc CLJS scripting on Node.js.
Experimental. Please report issues here.
Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.
Additional goals and features are:
Nbb requires Node.js v12 or newer.
CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).
Install nbb
from NPM:
$ npm install nbb -g
Omit -g
for a local install.
Try out an expression:
$ nbb -e '(+ 1 2 3)'
6
And then install some other NPM libraries to use in the script. E.g.:
$ npm install csv-parse shelljs zx
Create a script which uses the NPM libraries:
(ns script
(:require ["csv-parse/lib/sync$default" :as csv-parse]
["fs" :as fs]
["path" :as path]
["shelljs$default" :as sh]
["term-size$default" :as term-size]
["zx$default" :as zx]
["zx$fs" :as zxfs]
[nbb.core :refer [*file*]]))
(prn (path/resolve "."))
(prn (term-size))
(println (count (str (fs/readFileSync *file*))))
(prn (sh/ls "."))
(prn (csv-parse "foo,bar"))
(prn (zxfs/existsSync *file*))
(zx/$ #js ["ls"])
Call the script:
$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs
Nbb has first class support for macros: you can define them right inside your .cljs
file, like you are used to from JVM Clojure. Consider the plet
macro to make working with promises more palatable:
(defmacro plet
[bindings & body]
(let [binding-pairs (reverse (partition 2 bindings))
body (cons 'do body)]
(reduce (fn [body [sym expr]]
(let [expr (list '.resolve 'js/Promise expr)]
(list '.then expr (list 'clojure.core/fn (vector sym)
body))))
body
binding-pairs)))
Using this macro we can look async code more like sync code. Consider this puppeteer example:
(-> (.launch puppeteer)
(.then (fn [browser]
(-> (.newPage browser)
(.then (fn [page]
(-> (.goto page "https://clojure.org")
(.then #(.screenshot page #js{:path "screenshot.png"}))
(.catch #(js/console.log %))
(.then #(.close browser)))))))))
Using plet
this becomes:
(plet [browser (.launch puppeteer)
page (.newPage browser)
_ (.goto page "https://clojure.org")
_ (-> (.screenshot page #js{:path "screenshot.png"})
(.catch #(js/console.log %)))]
(.close browser))
See the puppeteer example for the full code.
Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet
macro is similar to promesa.core/let
.
$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)' 0.17s user 0.02s system 109% cpu 0.168 total
The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx
this adds another 300ms or so, so for faster startup, either use a globally installed nbb
or use $(npm bin)/nbb script.cljs
to bypass npx
.
Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.
To load .cljs
files from local paths or dependencies, you can use the --classpath
argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs
relative to your current dir, then you can load it via (:require [foo.bar :as fb])
. Note that nbb
uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar
in the namespace name becomes foo_bar
in the directory name.
To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:
$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"
and then feed it to the --classpath
argument:
$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]
Currently nbb
only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar
files will be added later.
The name of the file that is currently being executed is available via nbb.core/*file*
or on the metadata of vars:
(ns foo
(:require [nbb.core :refer [*file*]]))
(prn *file*) ;; "/private/tmp/foo.cljs"
(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"
Nbb includes reagent.core
which will be lazily loaded when required. You can use this together with ink to create a TUI application:
$ npm install ink
ink-demo.cljs
:
(ns ink-demo
(:require ["ink" :refer [render Text]]
[reagent.core :as r]))
(defonce state (r/atom 0))
(doseq [n (range 1 11)]
(js/setTimeout #(swap! state inc) (* n 500)))
(defn hello []
[:> Text {:color "green"} "Hello, world! " @state])
(render (r/as-element [hello]))
Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core
namespace is included with the let
and do!
macros. An example:
(ns prom
(:require [promesa.core :as p]))
(defn sleep [ms]
(js/Promise.
(fn [resolve _]
(js/setTimeout resolve ms))))
(defn do-stuff
[]
(p/do!
(println "Doing stuff which takes a while")
(sleep 1000)
1))
(p/let [a (do-stuff)
b (inc a)
c (do-stuff)
d (+ b c)]
(prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3
Also see API docs.
Since nbb v0.0.75 applied-science/js-interop is available:
(ns example
(:require [applied-science.js-interop :as j]))
(def o (j/lit {:a 1 :b 2 :c {:d 1}}))
(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1
Most of this library is supported in nbb, except the following:
:syms
.-x
notation. In nbb, you must use keywords.See the example of what is currently supported.
See the examples directory for small examples.
Also check out these projects built with nbb:
See API documentation.
See this gist on how to convert an nbb script or project to shadow-cljs.
Prequisites:
To build:
bb release
Run bb tasks
for more project-related tasks.
Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb
License: EPL-1.0
#node #javascript
1662107520
Superdom
You have dom
. It has all the DOM virtually within it. Use that power:
// Fetch all the page links
let links = dom.a.href;
// Links open in a new tab
dom.a.target = '_blank';
Only for modern browsers
Simply use the CDN via unpkg.com:
<script src="https://unpkg.com/superdom@1"></script>
Or use npm or bower:
npm|bower install superdom --save
It always returns an array with the matched elements. Get all the elements that match the selector:
// Simple element selector into an array
let allLinks = dom.a;
// Loop straight on the selection
dom.a.forEach(link => { ... });
// Combined selector
let importantLinks = dom['a.important'];
There are also some predetermined elements, such as id
, class
and attr
:
// Select HTML Elements by id:
let main = dom.id.main;
// by class:
let buttons = dom.class.button;
// or by attribute:
let targeted = dom.attr.target;
let targeted = dom.attr['target="_blank"'];
Use it as a function or a tagged template literal to generate DOM fragments:
// Not a typo; tagged template literals
let link = dom`<a href="https://google.com/">Google</a>`;
// It is the same as
let link = dom('<a href="https://google.com/">Google</a>');
Delete a piece of the DOM
// Delete all of the elements with the class .google
delete dom.class.google; // Is this an ad-block rule?
You can easily manipulate attributes right from the dom
node. There are some aliases that share the syntax of the attributes such as html
and text
(aliases for innerHTML
and textContent
). There are others that travel through the dom such as parent
(alias for parentNode) and children
. Finally, class
behaves differently as explained below.
The fetching will always return an array with the element for each of the matched nodes (or undefined if not there):
// Retrieve all the urls from the page
let urls = dom.a.href; // #attr-list
// ['https://google.com', 'https://facebook.com/', ...]
// Get an array of the h2 contents (alias of innerHTML)
let h2s = dom.h2.html; // #attr-alias
// ['Level 2 header', 'Another level 2 header', ...]
// Get whether any of the attributes has the value "_blank"
let hasBlank = dom.class.cta.target._blank; // #attr-value
// true/false
You also use these:
innerHTML
): retrieve a list of the htmlstextContent
): retrieve a list of the htmlsparentNode
): travel up one level// Set target="_blank" to all links
dom.a.target = '_blank'; // #attr-set
dom.class.tableofcontents.html = `
<ul class="tableofcontents">
${dom.h2.map(h2 => `
<li>
<a href="#${h2.id}">
${h2.innerHTML}
</a>
</li>
`).join('')}
</ul>
`;
To delete an attribute use the delete
keyword:
// Remove all urls from the page
delete dom.a.href;
// Remove all ids
delete dom.a.id;
It provides an easy way to manipulate the classes.
To retrieve whether a particular class is present or not:
// Get an array with true/false for a single class
let isTest = dom.a.class.test; // #class-one
For a general method to retrieve all classes you can do:
// Get a list of the classes of each matched element
let arrays = dom.a.class; // #class-arrays
// [['important'], ['button', 'cta'], ...]
// If you want a plain list with all of the classes:
let flatten = dom.a.class._flat; // #class-flat
// ['important', 'button', 'cta', ...]
// And if you just want an string with space-separated classes:
let text = dom.a.class._text; // #class-text
// 'important button cta ...'
// Add the class 'test' (different ways)
dom.a.class.test = true; // #class-make-true
dom.a.class = 'test'; // #class-push
// Remove the class 'test'
dom.a.class.test = false; // #class-make-false
Did we say it returns a simple array?
dom.a.forEach(link => link.innerHTML = 'I am a link');
But what an interesting array it is; indeed we are also proxy'ing it so you can manipulate its sub-elements straight from the selector:
// Replace all of the link's html with 'I am a link'
dom.a.html = 'I am a link';
Of course we might want to manipulate them dynamically depending on the current value. Just pass it a function:
// Append ' ^_^' to all of the links in the page
dom.a.html = html => html + ' ^_^';
// Same as this:
dom.a.forEach(link => link.innerHTML = link.innerHTML + ' ^_^');
Note: this won't work
dom.a.html += ' ^_^';
for more than 1 match (for reasons)
Or get into genetics to manipulate the attributes:
dom.a.attr.target = '_blank';
// Only to external sites:
let isOwnPage = el => /^https?\:\/\/mypage\.com/.test(el.getAttribute('href'));
dom.a.attr.target = (prev, i, element) => isOwnPage(element) ? '' : '_blank';
You can also handle and trigger events:
// Handle click events for all <a>
dom.a.on.click = e => ...;
// Trigger click event for all <a>
dom.a.trigger.click;
We are using Jest as a Grunt task for testing. Install Jest and run in the terminal:
grunt watch
Author: franciscop
Source Code: https://github.com/franciscop/superdom
License: MIT license
1596090360
In this article, we are going to learn HTML Button Tags. So let’s start!!!
The
#html tutorials #html button #html button attributes #html button element #html button tags #html
1669365780
To change an HTML element’s class
attribute value using JavaScript, you can use either the className
or the classList
property provided for every single HTML element.
This tutorial will help you learn how to use both methods, starting from the className
property.
The className
property allows you to fetch an HTML element’s class
attribute value as a string.
Here’s an example of how className
property works:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
console.log(paragraph.className); // "red"
</script>
</body>
Now that you know how the className
property works, you can change the class
value of an element by assigning a new value to the property as follows:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
paragraph.className = "yellow blue";
console.log(paragraph.className); // "yellow blue"
</script>
</body>
Using the className
property allows you to change the class
attribute value, but you need to add the previous value manually if you want to keep it.
For example, to keep the class "red"
from the <p>
element above and adds a new class named "font-large"
, you need to assign both classes as follows:
const paragraph = document.getElementById("header");
paragraph.className = "red font-large";
Even though the "red"
class is already present, you still need to assign it again, creating a small redundancy in your code.
To avoid this kind of redundancy, you can use the classList
property instead.
The classList
property is a read-only property of an HTML element that returns the class
attribute value as an array. The property also provides several methods for you to manipulate the class
attribute value.
For example, to add new class names without removing the current value, you can use the classList.add()
method.
Using the same <p>
element example above, here’s how to add the "font-large"
class without removing the "red"
element:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
paragraph.classList.add("font-large");
console.log(paragraph.classList); // ["red", "font-large"]
</script>
</body>
When you want to remove an element’s class
attribute value, you can use the remove()
method, which allows you to remove()
class names as a comma-delimited string:
<body>
<p id="header" class="red">Hello World! This is a paragraph element.</p>
<script>
const paragraph = document.getElementById("header");
paragraph.classList.add("font-large");
paragraph.classList.remove("red");
console.log(paragraph.classList); // ["font-large"]
</script>
</body>
For more information on classList
property you can read the following post:
JavaScript classList() property and methods explained
And that’s how you can change the class
attribute value using the className
or classList
property methods.
Original article source at: https://sebhastian.com/