Ryan  Schneider

Ryan Schneider

1605149764

Mutable vs Immutable Objects in Python

Everything in Python is an object. And what every newcomer to Python should quickly learn is that all objects in Python can be either mutable or immutable.

Image for post

Lets dive deeper into the details of it… Since everything in Python is an Object, every variable holds an object instance. When an object is initiated, it is assigned a unique object id. Its type is defined at runtime and once set can never change, however its state can be changed if it is mutable. Simple put, a mutable object can be changed after it is created, and an immutable object can’t.

Objects of built-in types like (int, float, bool, str, tuple, unicode) are immutable. Objects of built-in types like (list, set, dict) are mutable. Custom classes are generally mutable. To simulate immutability in a class, one should override attribute setting and deletion to raise exceptions.

Image for post

Now comes the question, how do we find out if our variable is a mutable or immutable object. For this we should understand what ‘ID’ and ‘TYPE’ functions are for.

ID and TYPE

The built-in function id() returns the identity of an object as an integer. This integer usually corresponds to the object’s location in memory, although this is specific to the Python implementation and the platform being used. The is operator compares the identity of two objects.

The built-in function type() returns the type of an object. Lets look at a simple example

''' Example 1 '''
>>> x = "Holberton"
>>> y = "Holberton"
>>> id(x)
140135852055856
>>> id(y)
140135852055856
>>> print(x is y) '''comparing the types'''
True''' Example 2 '''
>>> a = 50
>>> type(a)
<class: ‘int’>
>>> b = "Holberton"
>>> type(b)
<class: 'string'>

We have now seen how to compare two simple string variables to find out the types and id’s .So using these two functions, we can check to see how different types of objects are associated with variables and how objects can be changed .

Mutable and Immutable Objects

So as we discussed earlier, a mutable object can change its state or contents and immutable objects cannot.

Mutable objects:

list, dict, set, byte array

Immutable objects:

int, float, complex, string, tuple, frozen set [note: immutable version of set], bytes

A practical example to find out the mutability of object types

x = 10x = y

We are creating an object of type int. identifiers x and y points to the same object.

id(x) == id(y)id(y) == id(10)

if we do a simple operation.

x = x + 1

Now

id(x) != id(y)id(x) != id(10)

The object in which x was tagged is changed. object 10 was never modified. Immutable objects doesn’t allow modification after creation

In the case of mutable objects

m = list([1, 2, 3])n = m

We are creating an object of type list. identifiers m and m tagged to the same list object, which is a collection of 3 immutable int objects.

id(m) == id(n)

Now poping an item from list object does change the object,

m.pop()

object id will not be changed

id(m) == id(n)

m and n will be pointing to the same list object after the modification. The list object will now contain [1, 2].

So what have we seen so far from the above examples?

  • Python handles mutable and immutable objects differently.
  • Immutable are quicker to access than mutable objects.
  • Mutable objects are great to use when you need to change the size of the object, example list, dict etc… Immutables are used when you need to ensure that the object you made will always stay the same.
  • Immutable objects are fundamentally expensive to “change”, because doing so involves creating a copy. Changing mutable objects is cheap.

#python #programming #web-development #machine-learning #developer

What is GEEK

Buddha Community

Mutable vs Immutable Objects in Python
Arvel  Parker

Arvel Parker

1591611780

How to Find Ulimit For user on Linux

How can I find the correct ulimit values for a user account or process on Linux systems?

For proper operation, we must ensure that the correct ulimit values set after installing various software. The Linux system provides means of restricting the number of resources that can be used. Limits set for each Linux user account. However, system limits are applied separately to each process that is running for that user too. For example, if certain thresholds are too low, the system might not be able to server web pages using Nginx/Apache or PHP/Python app. System resource limits viewed or set with the NA command. Let us see how to use the ulimit that provides control over the resources available to the shell and processes.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

MEAN Stack Tutorial MongoDB ExpressJS AngularJS NodeJS

We are going to build a full stack Todo App using the MEAN (MongoDB, ExpressJS, AngularJS and NodeJS). This is the last part of three-post series tutorial.

MEAN Stack tutorial series:

AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II)
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III) 👈 you are here
Before completing the app, let’s cover some background about the this stack. If you rather jump to the hands-on part click here to get started.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

CentOS Linux 8.2 Released and Here is How to Upgrade it

CentOS Linux 8.2 (2004) released. It is a Linux distribution derived from RHEL (Red Hat Enterprise Linux) 8.2 source code. CentOS was created when Red Hat stopped providing RHEL free. CentOS 8.2 gives complete control of its open-source software packages and is fully customized for research needs or for running a high-performance website without the need for license fees. Let us see what’s new in CentOS 8.2 (2004) and how to upgrade existing CentOS 8.1.1199 server to 8.2.2004 using the command line.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

Brain  Crist

Brain Crist

1595434320

Docker Applikationen mit Visual Studio Code debuggen

Mit dem integrierten Debugger von Visual Studio Code lassen sich ASP.NET Core bzw. .NET Core Applikationen einfach und problemlos debuggen. Der Debugger unterstützt auch Remote Debugging, somit lassen sich zum Beispiel .NET Core Programme, die in einem Docker-Container laufen, debuggen.

Als Beispiel Applikation reicht das Default-Template für MVC Applikationen dotnet new mvc

$ md docker-core-debugger
$ cd docker-core-debugger
$ dotnet new mvc

Mit dotnet run prüfen wir kurz, ob die Applikation läuft und unter der Adresse http://localhost:5000 erreichbar ist.

$ dotnet run
$ Hosting environment: Production
$ Content root path: D:\Temp\docker-aspnetcore
$ Now listening on: http://localhost:5000

Die .NET Core Applikation builden wir mit dotnet build und publishen alles mit Hilfe von dotnet publish

$ dotnet build
$ dotnet publish -c Debug -o out --runtime linux-x64

Dabei gilt es zu beachten, dass die Build Configuration mit -c Debug gesetzt ist und das Output Directory auf -o out. Sonst findet Docker die nötigen Binaries nicht. Für den Docker Container brauchen wir nun ein Dockerfile, dass beim Start vorgängig den .NET Core command line debugger (VSDBG) installiert. Das Installations-Script für VSDBG ist unter https://aka.ms/getvsdbgsh abfrufbar.

FROM microsoft/aspnetcore:latest
WORKDIR /app

RUN apt-get update \
    && apt-get install -y --no-install-recommends \
       unzip procps \
    && rm -rf /var/lib/apt/lists/* \
    && curl -sSL https://aka.ms/getvsdbgsh | bash /dev/stdin -v latest -l /vsdbg

COPY ./out .
ENTRYPOINT ["dotnet", "docker-core-debugger.dll"]

Den Docker Container erstellen wir mit dem docker build Kommando

$ docker build -t coreapp .

und starten die Applikation mit docker run.

$ docker run -d -p 8080:80 --name coreapp coreapp

Jetzt muss Visual Studio Code nur noch wissen, wo unsere Applikation läuft. Dazu definieren wir eine launch.json vom Typ attach und konfigurieren die nötigen Parameter für den Debugger.

{
    "version": "0.2.0",
    "configurations": [
         {
            "name": ".NET Core Remote Attach",
            "type": "coreclr",
            "request": "attach",
            "processId": "${command:pickRemoteProcess}",
            "pipeTransport": {
                "pipeProgram": "docker",
                "pipeArgs": ["exec", "-i coreapp ${debuggerCommand}"],
                "quoteArgs": false,
                "debuggerPath": "/vsdbg/vsdbg",
                "pipeCwd": "${workspaceRoot}"
            },

            "logging": {
                "engineLogging": true,
                "exceptions": true,
                "moduleLoad": true,
                "programOutput": true
            },
        }
    ]
}

Mit F5 starten wir den Debugger. Wenn alles klappt, sollte eine Auswahl der Prozesse des Docker-Containers sichtbar sein.

vscode

Nun muss der dotnet Prozess ausgewählt werden. Der Visual Studio Code Debugger verbindet sich darauf mit VSDBG und wir können wie gewohnt unseren Code debuggen. Dazu setzen wir einen Breakpoint in der Index-Action des HomeControllers und rufen mit dem Browser die URL http://localhost:8080/ auf.

vscode

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

systemctl List All Failed Units/Services on Linux

Is there is a command to print list all failed units or services when using systemd on Linux? Can you tell me the systemctl command to list all failed services on Linux?

This quick tutorial explains how to find/list all failed systemd services/units on Linux operating systems using the systemctl command.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]