1603963789
The v-model directive is one of the few directives that come with Vue.js. This directive allows for two-way data binding. In this video, you will learn about how to add the multiple v-model directives for custom components in Vue.js. And You will also learn breaking changes of v-model from Vue 2 to Vue 3.
Github: https://github.com/qirolab/vue-3-composition-api-tutorial
#vue #vuejs #javascript #typescript
1653475560
msgpack.php
A pure PHP implementation of the MessagePack serialization format.
The recommended way to install the library is through Composer:
composer require rybakit/msgpack
To pack values you can either use an instance of a Packer
:
$packer = new Packer();
$packed = $packer->pack($value);
or call a static method on the MessagePack
class:
$packed = MessagePack::pack($value);
In the examples above, the method pack
automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map
and array
types, which are represented by a single array
type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0
and as a MessagePack map otherwise:
$mpArr1 = $packer->pack([1, 2]); // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]); // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]); // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]); // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}
However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap
method:
$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}
Here is a list of type-specific packing methods:
$packer->packNil(); // MP nil
$packer->packBool(true); // MP bool
$packer->packInt(42); // MP int
$packer->packFloat(M_PI); // MP float (32 or 64)
$packer->packFloat32(M_PI); // MP float 32
$packer->packFloat64(M_PI); // MP float 64
$packer->packStr('foo'); // MP str
$packer->packBin("\x80"); // MP bin
$packer->packArray([1, 2]); // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa"); // MP ext
Check the "Custom types" section below on how to pack custom types.
The Packer
object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):
Name | Description |
---|---|
FORCE_STR | Forces PHP strings to be packed as MessagePack UTF-8 strings |
FORCE_BIN | Forces PHP strings to be packed as MessagePack binary data |
DETECT_STR_BIN | Detects MessagePack str/bin type automatically |
FORCE_ARR | Forces PHP arrays to be packed as MessagePack arrays |
FORCE_MAP | Forces PHP arrays to be packed as MessagePack maps |
DETECT_ARR_MAP | Detects MessagePack array/map type automatically |
FORCE_FLOAT32 | Forces PHP floats to be packed as 32-bits MessagePack floats |
FORCE_FLOAT64 | Forces PHP floats to be packed as 64-bits MessagePack floats |
The type detection mode (
DETECT_STR_BIN
/DETECT_ARR_MAP
) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this,Map
andBin
. Check the "Custom types" section below for details.
Examples:
// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);
// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);
To unpack data you can either use an instance of a BufferUnpacker
:
$unpacker = new BufferUnpacker();
$unpacker->reset($packed);
$value = $unpacker->unpack();
or call a static method on the MessagePack
class:
$value = MessagePack::unpack($packed);
If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack
method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException
:
while ($chunk = ...) {
$unpacker->append($chunk);
if ($messages = $unpacker->tryUnpack()) {
return $messages;
}
}
If you want to unpack from a specific position in a buffer, use seek
:
$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer
To skip bytes from the current position, use skip
:
$unpacker->skip(10); // set position to 10 bytes ahead of the current position
To get the number of remaining (unread) bytes in the buffer:
$unreadBytesCount = $unpacker->getRemainingCount();
To check whether the buffer has unread data:
$hasUnreadBytes = $unpacker->hasRemaining();
If needed, you can remove already read data from the buffer by calling:
$releasedBytesCount = $unpacker->release();
With the read
method you can read raw (packed) data:
$packedData = $unpacker->read(2); // read 2 bytes
Besides the above methods BufferUnpacker
provides type-specific unpacking methods, namely:
$unpacker->unpackNil(); // PHP null
$unpacker->unpackBool(); // PHP bool
$unpacker->unpackInt(); // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr(); // PHP UTF-8 string
$unpacker->unpackBin(); // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap(); // PHP associative array
$unpacker->unpackExt(); // PHP MessagePack\Type\Ext object
The BufferUnpacker
object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):
Name | Description |
---|---|
BIGINT_AS_STR | Converts overflowed integers to strings [1] |
BIGINT_AS_GMP | Converts overflowed integers to GMP objects [2] |
BIGINT_AS_DEC | Converts overflowed integers to Decimal\Decimal objects [3] |
1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.
2. Make sure the GMP extension is enabled.
3. Make sure the Decimal extension is enabled.
Examples:
$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";
$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}
In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.
If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map
type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:
$packer = new Packer();
$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);
More type examples can be found in the src/Type directory.
As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.
A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin
format type using one of the supplied transformers, StreamTransformer
:
$packer = new Packer(null, [new StreamTransformer()]);
$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));
More type transformer examples can be found in the src/TypeTransformer directory.
In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).
An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.
The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.
Timestamp
The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension
class. This class is responsible for handling Timestamp
objects, which represent the number of seconds and optional adjustment in nanoseconds:
$timestampExtension = new TimestampExtension();
$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);
$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);
$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();
$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();
When using the MessagePack
class, the Timestamp extension is already registered:
$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);
Application-specific extensions
In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime
objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0
to 127
).
More extension examples can be found in the examples/MessagePack directory.
To learn more about how extension types can be useful, check out this article.
If an error occurs during packing/unpacking, a PackingFailedException
or an UnpackingFailedException
will be thrown, respectively. In addition, an InsufficientDataException
can be thrown during unpacking.
An InvalidOptionException
will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.
Run tests as follows:
vendor/bin/phpunit
Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:
./dockerfile.sh | docker build -t msgpack -
The command above will create a container named msgpack
with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE
environment variable:
PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -
See a list of various images here.
Then run the unit tests:
docker run --rm -v $PWD:/msgpack -w /msgpack msgpack
To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:
php-fuzzer fuzz tests/fuzz_buffer_unpacker.php
To check performance, run:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total 2.7618 4.0820
Skipped 4 4
Failed 0 0
Ignored 0 0
With JIT:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total 1.6432 1.9674
Skipped 4 4
Failed 0 0
Ignored 0 0
You may change default benchmark settings by defining the following environment variables:
Name | Default |
---|---|
MP_BENCH_TARGETS | pure_p,pure_u , see a list of available targets |
MP_BENCH_ITERATIONS | 100_000 |
MP_BENCH_DURATION | not set |
MP_BENCH_ROUNDS | 3 |
MP_BENCH_TESTS | -@slow , see a list of available tests |
For example:
export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'
Another example, benchmarking both the library and the PECL extension:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 1.5625 2.3866 0.7735 0.7243
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
With JIT:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 0.9642 1.0909 0.8224 0.7213
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.
The library is released under the MIT License. See the bundled LICENSE file for details.
Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License
1677907260
Node.js client for the official ChatGPT API.
This package is a Node.js wrapper around ChatGPT by OpenAI. TS batteries included. ✨
March 1, 2023
The official OpenAI chat completions API has been released, and it is now the default for this package! 🔥
Method | Free? | Robust? | Quality? |
---|---|---|---|
ChatGPTAPI | ❌ No | ✅ Yes | ✅️ Real ChatGPT models |
ChatGPTUnofficialProxyAPI | ✅ Yes | ☑️ Maybe | ✅ Real ChatGPT |
Note: We strongly recommend using ChatGPTAPI
since it uses the officially supported API from OpenAI. We may remove support for ChatGPTUnofficialProxyAPI
in a future release.
ChatGPTAPI
- Uses the gpt-3.5-turbo-0301
model with the official OpenAI chat completions API (official, robust approach, but it's not free)ChatGPTUnofficialProxyAPI
- Uses an unofficial proxy server to access ChatGPT's backend API in a way that circumvents Cloudflare (uses the real ChatGPT and is pretty lightweight, but relies on a third-party server and is rate-limited)To run the CLI, you'll need an OpenAI API key:
export OPENAI_API_KEY="sk-TODO"
npx chatgpt "your prompt here"
By default, the response is streamed to stdout, the results are stored in a local config file, and every invocation starts a new conversation. You can use -c
to continue the previous conversation and --no-stream
to disable streaming.
Under the hood, the CLI uses ChatGPTAPI
with text-davinci-003
to mimic ChatGPT.
Usage:
$ chatgpt <prompt>
Commands:
<prompt> Ask ChatGPT a question
rm-cache Clears the local message cache
ls-cache Prints the local message cache path
For more info, run any command with the `--help` flag:
$ chatgpt --help
$ chatgpt rm-cache --help
$ chatgpt ls-cache --help
Options:
-c, --continue Continue last conversation (default: false)
-d, --debug Enables debug logging (default: false)
-s, --stream Streams the response (default: true)
-s, --store Enables the local message cache (default: true)
-t, --timeout Timeout in milliseconds
-k, --apiKey OpenAI API key
-n, --conversationName Unique name for the conversation
-h, --help Display this message
-v, --version Display version number
npm install chatgpt
Make sure you're using node >= 18
so fetch
is available (or node >= 14
if you install a fetch polyfill).
To use this module from Node.js, you need to pick between two methods:
Method | Free? | Robust? | Quality? |
---|---|---|---|
ChatGPTAPI | ❌ No | ✅ Yes | ✅️ Real ChatGPT models |
ChatGPTUnofficialProxyAPI | ✅ Yes | ☑️ Maybe | ✅ Real ChatGPT |
ChatGPTAPI
- Uses the gpt-3.5-turbo-0301
model with the official OpenAI chat completions API (official, robust approach, but it's not free). You can override the model, completion params, and system message to fully customize your assistant.
ChatGPTUnofficialProxyAPI
- Uses an unofficial proxy server to access ChatGPT's backend API in a way that circumvents Cloudflare (uses the real ChatGPT and is pretty lightweight, but relies on a third-party server and is rate-limited)
Both approaches have very similar APIs, so it should be simple to swap between them.
Note: We strongly recommend using ChatGPTAPI
since it uses the officially supported API from OpenAI. We may remove support for ChatGPTUnofficialProxyAPI
in a future release.
Sign up for an OpenAI API key and store it in your environment.
import { ChatGPTAPI } from 'chatgpt'
async function example() {
const api = new ChatGPTAPI({
apiKey: process.env.OPENAI_API_KEY
})
const res = await api.sendMessage('Hello World!')
console.log(res.text)
}
You can override the default model
(gpt-3.5-turbo-0301
) and any OpenAI chat completion params using completionParams
:
const api = new ChatGPTAPI({
apiKey: process.env.OPENAI_API_KEY,
completionParams: {
temperature: 0.5,
top_p: 0.8
}
})
If you want to track the conversation, you'll need to pass the parentMessageId
like this:
const api = new ChatGPTAPI({ apiKey: process.env.OPENAI_API_KEY })
// send a message and wait for the response
let res = await api.sendMessage('What is OpenAI?')
console.log(res.text)
// send a follow-up
res = await api.sendMessage('Can you expand on that?', {
parentMessageId: res.id
})
console.log(res.text)
// send another follow-up
res = await api.sendMessage('What were we talking about?', {
parentMessageId: res.id
})
console.log(res.text)
You can add streaming via the onProgress
handler:
const res = await api.sendMessage('Write a 500 word essay on frogs.', {
// print the partial response as the AI is "typing"
onProgress: (partialResponse) => console.log(partialResponse.text)
})
// print the full text at the end
console.log(res.text)
You can add a timeout using the timeoutMs
option:
// timeout after 2 minutes (which will also abort the underlying HTTP request)
const response = await api.sendMessage(
'write me a really really long essay on frogs',
{
timeoutMs: 2 * 60 * 1000
}
)
If you want to see more info about what's actually being sent to OpenAI's chat completions API, set the debug: true
option in the ChatGPTAPI
constructor:
const api = new ChatGPTAPI({
apiKey: process.env.OPENAI_API_KEY,
debug: true
})
We default to a basic systemMessage
. You can override this in either the ChatGPTAPI
constructor or sendMessage
:
const res = await api.sendMessage('what is the answer to the universe?', {
systemMessage: `You are ChatGPT, a large language model trained by OpenAI. You answer as concisely as possible for each responseIf you are generating a list, do not have too many items.
Current date: ${new Date().toISOString()}\n\n`
})
Note that we automatically handle appending the previous messages to the prompt and attempt to optimize for the available tokens (which defaults to 4096
).
Usage in CommonJS (Dynamic import)
async function example() {
// To use ESM in CommonJS, you can use a dynamic import
const { ChatGPTAPI } = await import('chatgpt')
const api = new ChatGPTAPI({ apiKey: process.env.OPENAI_API_KEY })
const res = await api.sendMessage('Hello World!')
console.log(res.text)
}
The API for ChatGPTUnofficialProxyAPI
is almost exactly the same. You just need to provide a ChatGPT accessToken
instead of an OpenAI API key.
import { ChatGPTUnofficialProxyAPI } from 'chatgpt'
async function example() {
const api = new ChatGPTUnofficialProxyAPI({
accessToken: process.env.OPENAI_ACCESS_TOKEN
})
const res = await api.sendMessage('Hello World!')
console.log(res.text)
}
See demos/demo-reverse-proxy for a full example:
npx tsx demos/demo-reverse-proxy.ts
ChatGPTUnofficialProxyAPI
messages also contain a conversationid
in addition to parentMessageId
, since the ChatGPT webapp can't reference messages across
You can override the reverse proxy by passing apiReverseProxyUrl
:
const api = new ChatGPTUnofficialProxyAPI({
accessToken: process.env.OPENAI_ACCESS_TOKEN,
apiReverseProxyUrl: 'https://your-example-server.com/api/conversation'
})
Known reverse proxies run by community members include:
Reverse Proxy URL | Author | Rate Limits | Last Checked |
---|---|---|---|
https://chat.duti.tech/api/conversation | @acheong08 | 120 req/min by IP | 2/19/2023 |
https://gpt.pawan.krd/backend-api/conversation | @PawanOsman | ? | 2/19/2023 |
Note: info on how the reverse proxies work is not being published at this time in order to prevent OpenAI from disabling access.
To use ChatGPTUnofficialProxyAPI
, you'll need an OpenAI access token from the ChatGPT webapp. To do this, you can use any of the following methods which take an email
and password
and return an access token:
These libraries work with email + password accounts (e.g., they do not support accounts where you auth via Microsoft / Google).
Alternatively, you can manually get an accessToken
by logging in to the ChatGPT webapp and then opening https://chat.openai.com/api/auth/session
, which will return a JSON object containing your accessToken
string.
Access tokens last for days.
Note: using a reverse proxy will expose your access token to a third-party. There shouldn't be any adverse effects possible from this, but please consider the risks before using this method.
See the auto-generated docs for more info on methods and parameters.
Most of the demos use ChatGPTAPI
. It should be pretty easy to convert them to use ChatGPTUnofficialProxyAPI
if you'd rather use that approach. The only thing that needs to change is how you initialize the api with an accessToken
instead of an apiKey
.
To run the included demos:
OPENAI_API_KEY
in .envA basic demo is included for testing purposes:
npx tsx demos/demo.ts
A demo showing on progress handler:
npx tsx demos/demo-on-progress.ts
The on progress demo uses the optional onProgress
parameter to sendMessage
to receive intermediary results as ChatGPT is "typing".
npx tsx demos/demo-conversation.ts
A persistence demo shows how to store messages in Redis for persistence:
npx tsx demos/demo-persistence.ts
Any keyv adaptor is supported for persistence, and there are overrides if you'd like to use a different way of storing / retrieving messages.
Note that persisting message is required for remembering the context of previous conversations beyond the scope of the current Node.js process, since by default, we only store messages in memory. Here's an external demo of using a completely custom database solution to persist messages.
Note: Persistence is handled automatically when using ChatGPTUnofficialProxyAPI
because it is connecting indirectly to ChatGPT.
All of these awesome projects are built using the chatgpt
package. 🤯
If you create a cool integration, feel free to open a PR and add it to the list.
node >= 14
.fetch
is installed.chatgpt
, we recommend using it only from your backend APIPrevious Updates
Feb 19, 2023
We now provide three ways of accessing the unofficial ChatGPT API, all of which have tradeoffs:
Method | Free? | Robust? | Quality? |
---|---|---|---|
ChatGPTAPI | ❌ No | ✅ Yes | ☑️ Mimics ChatGPT |
ChatGPTUnofficialProxyAPI | ✅ Yes | ☑️ Maybe | ✅ Real ChatGPT |
ChatGPTAPIBrowser (v3) | ✅ Yes | ❌ No | ✅ Real ChatGPT |
Note: I recommend that you use either ChatGPTAPI
or ChatGPTUnofficialProxyAPI
.
ChatGPTAPI
- Uses text-davinci-003
to mimic ChatGPT via the official OpenAI completions API (most robust approach, but it's not free and doesn't use a model fine-tuned for chat)ChatGPTUnofficialProxyAPI
- Uses an unofficial proxy server to access ChatGPT's backend API in a way that circumvents Cloudflare (uses the real ChatGPT and is pretty lightweight, but relies on a third-party server and is rate-limited)ChatGPTAPIBrowser
- (deprecated; v3.5.1 of this package) Uses Puppeteer to access the official ChatGPT webapp (uses the real ChatGPT, but very flaky, heavyweight, and error prone)Feb 5, 2023
OpenAI has disabled the leaked chat model we were previously using, so we're now defaulting to text-davinci-003
, which is not free.
We've found several other hidden, fine-tuned chat models, but OpenAI keeps disabling them, so we're searching for alternative workarounds.
Feb 1, 2023
This package no longer requires any browser hacks – it is now using the official OpenAI completions API with a leaked model that ChatGPT uses under the hood. 🔥
import { ChatGPTAPI } from 'chatgpt'
const api = new ChatGPTAPI({
apiKey: process.env.OPENAI_API_KEY
})
const res = await api.sendMessage('Hello World!')
console.log(res.text)
Please upgrade to chatgpt@latest
(at least v4.0.0). The updated version is significantly more lightweight and robust compared with previous versions. You also don't have to worry about IP issues or rate limiting.
Huge shoutout to @waylaidwanderer for discovering the leaked chat model!
If you run into any issues, we do have a pretty active Discord with a bunch of ChatGPT hackers from the Node.js & Python communities.
Lastly, please consider starring this repo and following me on twitter to help support the project.
Thanks && cheers, Travis
Author: Transitive-bullshit
Source Code: https://github.com/transitive-bullshit/chatgpt-api
License: MIT license
1589900677
At the time of writing, Vue.js version 3 is in beta. However, that doesn’t mean we can’t start using it. In fact, this the best time to start experimenting with the new API and get ready for the official release.
In this tutorial, we will be building an infinite scroll hook with the new Composition API. we will be creating reactive-data, computed values, and using lifecycle methods.
#vue #composition-api #vue 3 #api
1596114720
Vue 3 has not been officially released yet, but the maintainers have released beta versions for us punters to try and provide feedback on.
If you’re wondering what the key features and main changes of Vue 3 are, I’ll highlight them in this article by walking you through the creation of a simple app using Vue 3 beta 9.
I’m going to cover as much new stuff as I can including fragments, teleport, the Composition API, and several more obscure changes. I’ll do my best to explain the rationale for the feature or change as well.
We’re going to build a simple app with a modal window feature. I chose this because it conveniently allows me to showcase a number of Vue 3 changes.
Here’s what the app looks like in it’s opened and closed states so you can picture in your mind what we’re working on:
Rather than installing Vue 3 directly, let’s clone the project vue-next-webpack-preview
which will give us a minimal Webpack setup including Vue 3.
$ git clone https://github.com/vuejs/vue-next-webpack-preview.git vue3-experiment
$ cd vue3-experiment
$ npm i
Once that’s cloned and the NPM modules are installed, all we need to do is remove the boilerplate files and create a fresh main.js
file so we can create our Vue 3 app from scratch.
$ rm -rf src/*
$ touch src/main.js
Now we’ll run the dev server:
$ npm run dev
Straight off the bat, the way we bootstrap a new Vue app has changed. Rather than using new Vue()
, we now need to import the new createApp
method.
We then call this method, passing our Vue instance definition object, and assign the return object to a variable app
.
Next, we’ll call the mount
method on app
and pass a CSS selector indicating our mount element, just like we did with the $mount
instance method in Vue 2.
src/main.js
import { createApp } from "vue";
const app = createApp({
// root instance definition
});
app.mount("#app");
With the old API, any global configuration we added (plugins, mixins, prototype properties etc) would permanently mutate global state. For example:
src/main.js
// Affects both instances
Vue.mixin({ ... })
const app1 = new Vue({ el: '#app-1' })
const app2 = new Vue({ el: '#app-2' })
This really shows up as an issue in unit testing, as it makes it tricky to ensure that each test is isolated from the last.
Under the new API, calling createApp
returns a fresh app instance that will not be polluted by any global configuration applied to other instances.
Learn more: Global API change RFC.
#vue.js #components #composition api #design patterns #vue 3 #vue
1595396220
As more and more data is exposed via APIs either as API-first companies or for the explosion of single page apps/JAMStack, API security can no longer be an afterthought. The hard part about APIs is that it provides direct access to large amounts of data while bypassing browser precautions. Instead of worrying about SQL injection and XSS issues, you should be concerned about the bad actor who was able to paginate through all your customer records and their data.
Typical prevention mechanisms like Captchas and browser fingerprinting won’t work since APIs by design need to handle a very large number of API accesses even by a single customer. So where do you start? The first thing is to put yourself in the shoes of a hacker and then instrument your APIs to detect and block common attacks along with unknown unknowns for zero-day exploits. Some of these are on the OWASP Security API list, but not all.
Most APIs provide access to resources that are lists of entities such as /users
or /widgets
. A client such as a browser would typically filter and paginate through this list to limit the number items returned to a client like so:
First Call: GET /items?skip=0&take=10
Second Call: GET /items?skip=10&take=10
However, if that entity has any PII or other information, then a hacker could scrape that endpoint to get a dump of all entities in your database. This could be most dangerous if those entities accidently exposed PII or other sensitive information, but could also be dangerous in providing competitors or others with adoption and usage stats for your business or provide scammers with a way to get large email lists. See how Venmo data was scraped
A naive protection mechanism would be to check the take count and throw an error if greater than 100 or 1000. The problem with this is two-fold:
skip = 0
while True: response = requests.post('https://api.acmeinc.com/widgets?take=10&skip=' + skip), headers={'Authorization': 'Bearer' + ' ' + sys.argv[1]}) print("Fetched 10 items") sleep(randint(100,1000)) skip += 10
To secure against pagination attacks, you should track how many items of a single resource are accessed within a certain time period for each user or API key rather than just at the request level. By tracking API resource access at the user level, you can block a user or API key once they hit a threshold such as “touched 1,000,000 items in a one hour period”. This is dependent on your API use case and can even be dependent on their subscription with you. Like a Captcha, this can slow down the speed that a hacker can exploit your API, like a Captcha if they have to create a new user account manually to create a new API key.
Most APIs are protected by some sort of API key or JWT (JSON Web Token). This provides a natural way to track and protect your API as API security tools can detect abnormal API behavior and block access to an API key automatically. However, hackers will want to outsmart these mechanisms by generating and using a large pool of API keys from a large number of users just like a web hacker would use a large pool of IP addresses to circumvent DDoS protection.
The easiest way to secure against these types of attacks is by requiring a human to sign up for your service and generate API keys. Bot traffic can be prevented with things like Captcha and 2-Factor Authentication. Unless there is a legitimate business case, new users who sign up for your service should not have the ability to generate API keys programmatically. Instead, only trusted customers should have the ability to generate API keys programmatically. Go one step further and ensure any anomaly detection for abnormal behavior is done at the user and account level, not just for each API key.
APIs are used in a way that increases the probability credentials are leaked:
If a key is exposed due to user error, one may think you as the API provider has any blame. However, security is all about reducing surface area and risk. Treat your customer data as if it’s your own and help them by adding guards that prevent accidental key exposure.
The easiest way to prevent key exposure is by leveraging two tokens rather than one. A refresh token is stored as an environment variable and can only be used to generate short lived access tokens. Unlike the refresh token, these short lived tokens can access the resources, but are time limited such as in hours or days.
The customer will store the refresh token with other API keys. Then your SDK will generate access tokens on SDK init or when the last access token expires. If a CURL command gets pasted into a GitHub issue, then a hacker would need to use it within hours reducing the attack vector (unless it was the actual refresh token which is low probability)
APIs open up entirely new business models where customers can access your API platform programmatically. However, this can make DDoS protection tricky. Most DDoS protection is designed to absorb and reject a large number of requests from bad actors during DDoS attacks but still need to let the good ones through. This requires fingerprinting the HTTP requests to check against what looks like bot traffic. This is much harder for API products as all traffic looks like bot traffic and is not coming from a browser where things like cookies are present.
The magical part about APIs is almost every access requires an API Key. If a request doesn’t have an API key, you can automatically reject it which is lightweight on your servers (Ensure authentication is short circuited very early before later middleware like request JSON parsing). So then how do you handle authenticated requests? The easiest is to leverage rate limit counters for each API key such as to handle X requests per minute and reject those above the threshold with a 429 HTTP response.
There are a variety of algorithms to do this such as leaky bucket and fixed window counters.
APIs are no different than web servers when it comes to good server hygiene. Data can be leaked due to misconfigured SSL certificate or allowing non-HTTPS traffic. For modern applications, there is very little reason to accept non-HTTPS requests, but a customer could mistakenly issue a non HTTP request from their application or CURL exposing the API key. APIs do not have the protection of a browser so things like HSTS or redirect to HTTPS offer no protection.
Test your SSL implementation over at Qualys SSL Test or similar tool. You should also block all non-HTTP requests which can be done within your load balancer. You should also remove any HTTP headers scrub any error messages that leak implementation details. If your API is used only by your own apps or can only be accessed server-side, then review Authoritative guide to Cross-Origin Resource Sharing for REST APIs
APIs provide access to dynamic data that’s scoped to each API key. Any caching implementation should have the ability to scope to an API key to prevent cross-pollution. Even if you don’t cache anything in your infrastructure, you could expose your customers to security holes. If a customer with a proxy server was using multiple API keys such as one for development and one for production, then they could see cross-pollinated data.
#api management #api security #api best practices #api providers #security analytics #api management policies #api access tokens #api access #api security risks #api access keys