Cesar  Hamill

Cesar Hamill

1596691320

Serverless SWOT analysis

Building a serverless application means you usually trade in old issues for new ones. This is an attempt to create a decision framework and break down arguments for and against using serverless vs. other computing models.

If you ever find yourself deciding for or against serverless the following tries to make the decision easier for you. Maybe you should save this post for future reference if you find it useful. Or don’t, it’s up to you. No seriously, save it.

This is also an open document which I will keep improving in the future. Edits are welcome!

Strengths

  1. Faster time to market - The real benefit of serverless is that developers only focus on the business logic and that drastically increases development speed and time to market.
  2. Scalability - If you follow the right architectural patterns, serverless is very scalable.
  3. Cost effectiveness - In most cases, serverless is cheaper than other computing models although exceptions apply for some forms of compute heavy data processing/background jobs.

Weaknesses

  1. Troubleshooting and testing - It’s difficult to test locally and it’s difficult to navigate debugging data. You can set up a local environment for testing but it will take a lot of effort. Dashbird is good for observing and debugging production architectures.
  2. Learning curve - New patterns and tooling can take a while to learn and adopt.
  3. Developer onboarding - Bigger learning curve for new developers mid-project.

#serverless #swot

What is GEEK

Buddha Community

Serverless SWOT analysis
Ashish parmar

Ashish parmar

1611567681

Serverless Applications - Pros and Cons to Help Businesses Decide - Prismetric

In the past few years, especially after Amazon Web Services (AWS) introduced its Lambda platform, serverless architecture became the business realm’s buzzword. The increasing popularity of serverless applications saw market leaders like Netflix, Airbnb, Nike, etc., adopting the serverless architecture to handle their backend functions better. Moreover, serverless architecture’s market size is expected to reach a whopping $9.17 billion by the year 2023.

Global_Serverless_Architecture_Market_2019-2023

Why use serverless computing?
As a business it is best to approach a professional mobile app development company to build apps that are deployed on various servers; nevertheless, businesses should understand that the benefits of the serverless applications lie in the possibility it promises ideal business implementations and not in the hype created by cloud vendors. With the serverless architecture, the developers can easily code arbitrary codes on-demand without worrying about the underlying hardware.

But as is the case with all game-changing trends, many businesses opt for serverless applications just for the sake of being up-to-date with their peers without thinking about the actual need of their business.

The serverless applications work well with stateless use cases, the cases which execute cleanly and give the next operation in a sequence. On the other hand, the serverless architecture is not fit for predictable applications where there is a lot of reading and writing in the backend system.

Another benefit of working with the serverless software architecture is that the third-party service provider will charge based on the total number of requests. As the number of requests increases, the charge is bound to increase, but then it will cost significantly less than a dedicated IT infrastructure.

Defining serverless software architecture
In serverless software architecture, the application logic is implemented in an environment where operating systems, servers, or virtual machines are not visible. Although where the application logic is executed is running on any operating system which uses physical servers. But the difference here is that managing the infrastructure is the soul of the service provider and the mobile app developer focuses only on writing the codes.

There are two different approaches when it comes to serverless applications. They are

Backend as a service (BaaS)
Function as a service (FaaS)

  1. Backend as a service (BaaS)
    The basic required functionality of the growing number of third party services is to provide server-side logic and maintain their internal state. This requirement has led to applications that do not have server-side logic or any application-specific logic. Thus they depend on third-party services for everything.

Moreover, other examples of third-party services are Autho, AWS Cognito (authentication as a service), Amazon Kinesis, Keen IO (analytics as a service), and many more.

  1. Function as a Service (FaaS)
    FaaS is the modern alternative to traditional architecture when the application still requires server-side logic. With Function as a Service, the developer can focus on implementing stateless functions triggered by events and can communicate efficiently with the external world.

FaaS serverless architecture is majorly used with microservices architecture as it renders everything to the organization. AWS Lambda, Google Cloud functions, etc., are some of the examples of FaaS implementation.

Pros of Serverless applications
There are specific ways in which serverless applications can redefine the way business is done in the modern age and has some distinct advantages over the traditional could platforms. Here are a few –

🔹 Highly Scalable
The flexible nature of the serverless architecture makes it ideal for scaling the applications. The serverless application’s benefit is that it allows the vendor to run each of the functions in separate containers, allowing optimizing them automatically and effectively. Moreover, unlike in the traditional cloud, one doesn’t need to purchase a certain number of resources in serverless applications and can be as flexible as possible.

🔹 Cost-Effective
As the organizations don’t need to spend hundreds and thousands of dollars on hardware, they don’t need to pay anything to the engineers to maintain the hardware. The serverless application’s pricing model is execution based as the organization is charged according to the executions they have made.

The company that uses the serverless applications is allotted a specific amount of time, and the pricing of the execution depends on the memory required. Different types of costs like presence detection, access authorization, image processing, etc., associated with a physical or virtual server is completely eliminated with the serverless applications.

🔹 Focuses on user experience
As the companies don’t always think about maintaining the servers, it allows them to focus on more productive things like developing and improving customer service features. A recent survey says that about 56% of the users are either using or planning to use the serverless applications in the coming six months.

Moreover, as the companies would save money with serverless apps as they don’t have to maintain any hardware system, it can be then utilized to enhance the level of customer service and features of the apps.

🔹 Ease of migration
It is easy to get started with serverless applications by porting individual features and operate them as on-demand events. For example, in a CMS, a video plugin requires transcoding video for different formats and bitrates. If the organization wished to do this with a WordPress server, it might not be a good fit as it would require resources dedicated to serving pages rather than encoding the video.

Moreover, the benefits of serverless applications can be used optimally to handle metadata encoding and creation. Similarly, serverless apps can be used in other plugins that are often prone to critical vulnerabilities.

Cons of serverless applications
Despite having some clear benefits, serverless applications are not specific for every single use case. We have listed the top things that an organization should keep in mind while opting for serverless applications.

🔹 Complete dependence on third-party vendor
In the realm of serverless applications, the third-party vendor is the king, and the organizations have no options but to play according to their rules. For example, if an application is set in Lambda, it is not easy to port it into Azure. The same is the case for coding languages. In present times, only Python developers and Node.js developers have the luxury to choose between existing serverless options.

Therefore, if you are planning to consider serverless applications for your next project, make sure that your vendor has everything needed to complete the project.

🔹 Challenges in debugging with traditional tools
It isn’t easy to perform debugging, especially for large enterprise applications that include various individual functions. Serverless applications use traditional tools and thus provide no option to attach a debugger in the public cloud. The organization can either do the debugging process locally or use logging for the same purpose. In addition to this, the DevOps tools in the serverless application do not support the idea of quickly deploying small bits of codes into running applications.

#serverless-application #serverless #serverless-computing #serverless-architeture #serverless-application-prosand-cons

Christa  Stehr

Christa Stehr

1602681082

Overcoming Common Serverless Challenges with Mainframe CICS Programs

By this point most enterprises, including those running on legacy infrastructures, are familiar with the benefits of serverless computing:

  • Greater scalability
  • Faster development
  • More efficient deployment
  • Lower cost

The benefits of agility and cost reduction are especially relevant in the current macroeconomic environment when customer behavior is changing, end-user needs are difficult to predict, and development teams are under pressure to do more with less.

So serverless is a no-brainer, right?

Not exactly. Serverless might be relatively painless for a new generation of cloud-native software companies that grew up in a world of APIs and microservices, but it creates headaches for the many organizations that still rely heavily on legacy infrastructure.

In particular, enterprises running mainframe CICS programs are likely to encounter frustrating stumbling blocks on the path to launching Functions as a Service (FaaS). This population includes global enterprises that depend on CICS applications to effectively manage high-volume transactional processing requirements – particularly in the banking, financial services, and insurance industries.

These organizations stand to achieve time and cost savings through a modern approach to managing legacy infrastructure, as opposed to launching serverless applications on a brittle foundation. Here are three of the biggest obstacles they face and how to overcome them.

Challenge #1

Middleware that introduces complexity, technical debt, and latency. Many organizations looking to integrate CICS applications into a microservices or serverless architecture rely on middleware (e.g., an ESB or SOA) to access data from the underlying applications. This strategy introduces significant runtime performance challenges and creates what one bank’s chief architect referred to as a “lasagna architecture,” making DevOps impossible.

#serverless architecture #serverless functions #serverless benefits #mainframes #serverless api #serverless integration

Cesar  Hamill

Cesar Hamill

1596691320

Serverless SWOT analysis

Building a serverless application means you usually trade in old issues for new ones. This is an attempt to create a decision framework and break down arguments for and against using serverless vs. other computing models.

If you ever find yourself deciding for or against serverless the following tries to make the decision easier for you. Maybe you should save this post for future reference if you find it useful. Or don’t, it’s up to you. No seriously, save it.

This is also an open document which I will keep improving in the future. Edits are welcome!

Strengths

  1. Faster time to market - The real benefit of serverless is that developers only focus on the business logic and that drastically increases development speed and time to market.
  2. Scalability - If you follow the right architectural patterns, serverless is very scalable.
  3. Cost effectiveness - In most cases, serverless is cheaper than other computing models although exceptions apply for some forms of compute heavy data processing/background jobs.

Weaknesses

  1. Troubleshooting and testing - It’s difficult to test locally and it’s difficult to navigate debugging data. You can set up a local environment for testing but it will take a lot of effort. Dashbird is good for observing and debugging production architectures.
  2. Learning curve - New patterns and tooling can take a while to learn and adopt.
  3. Developer onboarding - Bigger learning curve for new developers mid-project.

#serverless #swot

Ian  Robinson

Ian Robinson

1623856080

Streamline Your Data Analysis With Automated Business Analysis

Have you ever visited a restaurant or movie theatre, only to be asked to participate in a survey? What about providing your email address in exchange for coupons? Do you ever wonder why you get ads for something you just searched for online? It all comes down to data collection and analysis. Indeed, everywhere you look today, there’s some form of data to be collected and analyzed. As you navigate running your business, you’ll need to create a data analytics plan for yourself. Data helps you solve problems , find new customers, and re-assess your marketing strategies. Automated business analysis tools provide key insights into your data. Below are a few of the many valuable benefits of using such a system for your organization’s data analysis needs.

Workflow integration and AI capability

Pinpoint unexpected data changes

Understand customer behavior

Enhance marketing and ROI

#big data #latest news #data analysis #streamline your data analysis #automated business analysis #streamline your data analysis with automated business analysis

Tyrique  Littel

Tyrique Littel

1604008800

Static Code Analysis: What It Is? How to Use It?

Static code analysis refers to the technique of approximating the runtime behavior of a program. In other words, it is the process of predicting the output of a program without actually executing it.

Lately, however, the term “Static Code Analysis” is more commonly used to refer to one of the applications of this technique rather than the technique itself — program comprehension — understanding the program and detecting issues in it (anything from syntax errors to type mismatches, performance hogs likely bugs, security loopholes, etc.). This is the usage we’d be referring to throughout this post.

“The refinement of techniques for the prompt discovery of error serves as well as any other as a hallmark of what we mean by science.”

  • J. Robert Oppenheimer

Outline

We cover a lot of ground in this post. The aim is to build an understanding of static code analysis and to equip you with the basic theory, and the right tools so that you can write analyzers on your own.

We start our journey with laying down the essential parts of the pipeline which a compiler follows to understand what a piece of code does. We learn where to tap points in this pipeline to plug in our analyzers and extract meaningful information. In the latter half, we get our feet wet, and write four such static analyzers, completely from scratch, in Python.

Note that although the ideas here are discussed in light of Python, static code analyzers across all programming languages are carved out along similar lines. We chose Python because of the availability of an easy to use ast module, and wide adoption of the language itself.

How does it all work?

Before a computer can finally “understand” and execute a piece of code, it goes through a series of complicated transformations:

static analysis workflow

As you can see in the diagram (go ahead, zoom it!), the static analyzers feed on the output of these stages. To be able to better understand the static analysis techniques, let’s look at each of these steps in some more detail:

Scanning

The first thing that a compiler does when trying to understand a piece of code is to break it down into smaller chunks, also known as tokens. Tokens are akin to what words are in a language.

A token might consist of either a single character, like (, or literals (like integers, strings, e.g., 7Bob, etc.), or reserved keywords of that language (e.g, def in Python). Characters which do not contribute towards the semantics of a program, like trailing whitespace, comments, etc. are often discarded by the scanner.

Python provides the tokenize module in its standard library to let you play around with tokens:

Python

1

import io

2

import tokenize

3

4

code = b"color = input('Enter your favourite color: ')"

5

6

for token in tokenize.tokenize(io.BytesIO(code).readline):

7

    print(token)

Python

1

TokenInfo(type=62 (ENCODING),  string='utf-8')

2

TokenInfo(type=1  (NAME),      string='color')

3

TokenInfo(type=54 (OP),        string='=')

4

TokenInfo(type=1  (NAME),      string='input')

5

TokenInfo(type=54 (OP),        string='(')

6

TokenInfo(type=3  (STRING),    string="'Enter your favourite color: '")

7

TokenInfo(type=54 (OP),        string=')')

8

TokenInfo(type=4  (NEWLINE),   string='')

9

TokenInfo(type=0  (ENDMARKER), string='')

(Note that for the sake of readability, I’ve omitted a few columns from the result above — metadata like starting index, ending index, a copy of the line on which a token occurs, etc.)

#code quality #code review #static analysis #static code analysis #code analysis #static analysis tools #code review tips #static code analyzer #static code analysis tool #static analyzer