What are Kubernetes Persistent Volumes?

Kubernetes is one of the most popular orchestration solutions for hosting containers in a production environment. The platform allows users to automate the deployment of numerous instances of an application while scaling up and down according to demand.

However, due to the volatile nature of Kubernetes pods, storage volumes needed to be resolved with an entirely new approach.

I will try to explain what Kubernetes persistent volumes are and why they are so significant.

What are Kubernetes Persistent Volumes?

Kubernetes persistent volumes are user-provisioned storage volumes assigned to a Kubernetes cluster. Persistent volumes’ life-cycle is independent from any pod using it. Thus, persistent volumes are perfect for use cases in which you need to retain data regardless of the unpredictable life process of Kubernetes pods.

Without persistent volumes, maintaining services as common as a database would be impossible. Whenever a pod gets replaced, the data gained during the life-cycle of that pod would be lost. However, thanks to persistent volumes, data is contained in a consistent state.

#kubernetes

What is GEEK

Buddha Community

What are Kubernetes Persistent Volumes?
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Working with Persistent Volumes in Kubernetes

The main reason behind containerization is to allow microservices to run in a stateless way. A container will receive provisioned cloud resources, perform its tasks, and then be destroyed as soon as the process is over. There are no traces of that container or tied up cloud resources to worry about. This was what has made containerization so popular in the first place.

Running microservices as stateless instances, however, is not always as easy as it seems. As more applications get refactored and more microservices rely on containers for efficiency, sticking with the stateless concept becomes harder and harder. Stateless containers don’t always have the ability to meet complex requirements.

Here’s the simple truth: truly stateless applications, those that require no data to be stored over a long period of time, are unicorns; they are incredibly difficult to find in the wild, if not impossible. This is where persistent volumes, or stateful storage, comes in handy. It bridges the gap between ideal containerization and the requirements of apps and services.

Kubernetes Persistent Volume

Before we go further into how persistent volumes can be utilized, we need to take a closer look at persistent volume in Kubernetes. Kubernetes has always managed its storage resources in a peculiar way. It provisions, configures, and attaches storage blocks using a specific process or primitive, and they must be executed for the volumes to be usable.

Provisioning is the simplest part of the equation. This is the part where Persistent Volumes are created. You have the option to provision volumes statically or dynamically⁠—we will get to this in a bit. Configuration of volumes is handled as Storage Class. Storage Class contains details on the volumes they are associated with.

To complete the process, the volumes need to be attached to pods. Persistent Volume Claims are issued by pods whenever they need to use the storage blocks. A Persistent Volume Claim details the amount of storage required as well as other requirements based on the pods’ operations. Volumes can be attached and detached without being destroyed.

#kubernetes #kubernetes volumes #persistent volumes

Maud  Rosenbaum

Maud Rosenbaum

1601051854

Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.

Stability

In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud

Nels  Franecki

Nels Franecki

1617439080

Working With Persistent Volumes in Kubernetes

Introduction

The main reason behind containerization is to allow microservices to run in a stateless way. A container will receive provisioned cloud resources, perform its tasks, and then be destroyed as soon as the process is over. There are no traces of that container or tied up cloud resources to worry about. This was what has made containerization so popular in the first place.

Running microservices as stateless instances, however, is not always as easy as it seems. As more applications get refactored and more microservices rely on containers for efficiency, sticking with the stateless concept becomes harder and harder. Stateless containers don’t always have the ability to meet complex requirements.

Here’s a simple truth: truly stateless applications, those that require no data to be stored over a long period of time, are unicorns; they are incredibly difficult to find in the wild, if not impossible. This is where persistent volumes, or stateful storage, come in handy. It bridges the gap between ideal containerization and the requirements of apps and services.

Kubernetes Persistent Volume

Before we go further into how persistent volumes can be utilized, we need to take a closer look at persistent volume in Kubernetes. Kubernetes has always managed its storage resources in a peculiar way. It provisions, configures, and attaches storage blocks using a specific process or primitive; they must be executed for the volumes to be usable.

Provisioning is the simplest part of the equation. This is the part where Persistent Volumes are created. You have the option to provision volumes statically or dynamically—we will get to this in a bit. Configuration of volumes is handled as Storage Class. Storage Class contains details on the volumes they are associated with.

To complete the process, the volumes need to be attached to pods. Persistent Volume Claims are issued by pods whenever they need to use the storage blocks. A Persistent Volume Claim details the amount of storage required as well as other requirements based on the pods’ operations. Volumes can be attached and detached without being destroyed.

Persistent Volume is slightly different from Ephemeral Volume in one way: the latter exists only for as long as the pods exist. Unlike Persistent Volume, Ephemeral Volume is created during the pod creation process and gets destroyed when the pod is destroyed. It is handy for storing temporary data or for supporting certain operations such as data visualization.

#kubernetes #containers #storage #containers and containerization #persistent storage #persistent volume

Mitchel  Carter

Mitchel Carter

1601305200

Microsoft Announces General Availability Of Bridge To Kubernetes

Recently, Microsoft announced the general availability of Bridge to Kubernetes, formerly known as Local Process with Kubernetes. It is an iterative development tool offered in Visual Studio and VS Code, which allows developers to write, test as well as debug microservice code on their development workstations while consuming dependencies and inheriting the existing configuration from a Kubernetes environment.

Nick Greenfield, Program Manager, Bridge to Kubernetes stated in an official blog post, “Bridge to Kubernetes is expanding support to any Kubernetes. Whether you’re connecting to your development cluster running in the cloud, or to your local Kubernetes cluster, Bridge to Kubernetes is available for your end-to-end debugging scenarios.”

Bridge to Kubernetes provides a number of compelling features. Some of them are mentioned below-

#news #bridge to kubernetes #developer tools #kubernetes #kubernetes platform #kubernetes tools #local process with kubernetes #microsoft