Sofia  Maggio

Sofia Maggio

1626106680

Neural networks forward propagation deep dive 102

Forward propagation is an important part of neural networks. Its not as hard as it sounds ;-)

This is part 2 in my series on neural networks. You are welcome to start at part 1 or skip to part 5 if you just want the code.

So, to perform gradient descent or cost optimisation, we need to write a cost function which performs:

  1. Forward propagation
  2. Backward propagation
  3. Calculate cost & gradient

In this article, we are dealing with (1) forward propagation.

In figure 1, we can see our network diagram with much of the details removed. We will focus on one unit in level 2 and one unit in level 3. This understanding can then be copied to all units. (ps. one unit is one of the circles below)

Our goal in forward prop is to calculate A1, Z2, A2, Z3 & A3

Just so we can visualise the X features, see figure 2 and for some more info on the data, see part 1.

Initial weights (thetas)

As it turns out, this is quite an important topic for gradient descent. If you have not dealt with gradient descent, then check this article first. We can see above that we need 2 sets of weights. (signified by ø). We often still calls these weights theta and they mean the same thing.

We need one set of thetas for level 2 and a 2nd set for level 3. Each theta is a matrix and is size(L) * size(L-1). Thus for above:

  • Theta1 = 6x4 matrix

  • Theta2 = 7x7 matrix

We have to now guess at which initial thetas should be our starting point. Here, epsilon comes to the rescue and below is the matlab code to easily generate some random small numbers for our initial weights.

function weights = initializeWeights(inSize, outSize)
  epsilon = 0.12;
  weights = rand(outSize, 1 + inSize) * 2 * epsilon - epsilon;
end

After running above function with our sizes for each theta as mentioned above, we will get some good small random initial values as in figure 3

. For figure 1 above, the weights we mention would refer to rows 1 in below matrix’s.

Now, that we have our initial weights, we can go ahead and run gradient descent. However, this needs a cost function to help calculate the cost and gradients as it goes along. Before we can calculate the costs, we need to perform forward propagation to calculate our A1, Z2, A2, Z3 and A3 as per figure 1.

#machine-learning #machine-intelligence #neural-network-algorithm #neural-networks #networks

Neural networks forward propagation deep dive 102