The Rust Programming Language - Understanding Structs in Rust

The Rust Programming Language - Understanding Structs in Rust

Structs are a way of creating more complex data types. Structs are similar to tuples. There are three types of structures ("structs") that can be created using the struct keyword: Tuple structs, which are, basically, named tuples. The classic C structs. Unit structs, which are field-less, are useful for generics.

structs are a way of creating more complex data types. For example, if we were doing calculations involving coordinates in 2D space, we would need both an x and a y value:


# #![allow(unused_variables)]
#fn main() {
let origin_x = 0;
let origin_y = 0;
#}

A struct lets us combine these two into a single, unified datatype with x and y as field labels:

struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let origin = Point { x: 0, y: 0 }; // origin: Point

    println!("The origin is at ({}, {})", origin.x, origin.y);
}

There’s a lot going on here, so let’s break it down. We declare a struct with the struct keyword, and then with a name. By convention, structs begin with a capital letter and are camel cased: PointInSpace, not Point_In_Space.

We can create an instance of our struct via let, as usual, but we use a key: value style syntax to set each field. The order doesn’t need to be the same as in the original declaration.

Finally, because fields have names, we can access them through dot notation: origin.x.

The values in structs are immutable by default, like other bindings in Rust. Use mut to make them mutable:

struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let mut point = Point { x: 0, y: 0 };

    point.x = 5;

    println!("The point is at ({}, {})", point.x, point.y);
}

This will print The point is at (5, 0).

Rust does not support field mutability at the language level, so you cannot write something like this:

struct Point {
    mut x: i32, // This causes an error.
    y: i32,
}

Mutability is a property of the binding, not of the structure itself. If you’re used to field-level mutability, this may seem strange at first, but it significantly simplifies things. It even lets you make things mutable on a temporary basis:

struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let mut point = Point { x: 0, y: 0 };

    point.x = 5;

    let point = point; // `point` is now immutable.

    point.y = 6; // This causes an error.
}

Your structure can still contain &mut references, which will let you do some kinds of mutation:

struct Point {
    x: i32,
    y: i32,
}

struct PointRef<'a> {
    x: &'a mut i32,
    y: &'a mut i32,
}

fn main() {
    let mut point = Point { x: 0, y: 0 };

    {
        let r = PointRef { x: &mut point.x, y: &mut point.y };

        *r.x = 5;
        *r.y = 6;
    }

    assert_eq!(5, point.x);
    assert_eq!(6, point.y);
}

Initialization of a data structure (struct, enum, union) can be simplified when fields of the data structure are initialized with variables of the same names as the fields.

#[derive(Debug)]
struct Person<'a> {
    name: &'a str,
    age: u8
}

fn main() {
    // Create struct with field init shorthand
    let name = "Peter";
    let age = 27;
    let peter = Person { name, age };

    // Debug-print struct
    println!("{:?}", peter);
}

Update syntax

A struct can include .. to indicate that you want to use a copy of some other struct for some of the values. For example:


# #![allow(unused_variables)]
#fn main() {
struct Point3d {
    x: i32,
    y: i32,
    z: i32,
}

let mut point = Point3d { x: 0, y: 0, z: 0 };
point = Point3d { y: 1, .. point };
#}

This gives point a new y, but keeps the old x and z values. It doesn’t have to be the same struct either, you can use this syntax when making new ones, and it will copy the values you don’t specify:


# #![allow(unused_variables)]
#fn main() {
# struct Point3d {
#     x: i32,
#     y: i32,
#     z: i32,
# }
let origin = Point3d { x: 0, y: 0, z: 0 };
let point = Point3d { z: 1, x: 2, .. origin };
#}
Tuple structs

Rust has another data type that’s like a hybrid between a tuple and a struct, called a ‘tuple struct’. Tuple structs have a name, but their fields don't. They are declared with the struct keyword, and then with a name followed by a tuple:


# #![allow(unused_variables)]
#fn main() {
struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);
#}

Here, black and origin are not the same type, even though they contain the same values.

The members of a tuple struct may be accessed by dot notation or destructuring let, just like regular tuples:


# #![allow(unused_variables)]
#fn main() {
# struct Color(i32, i32, i32);
# struct Point(i32, i32, i32);
# let black = Color(0, 0, 0);
# let origin = Point(0, 0, 0);
let black_r = black.0;
let Point(_, origin_y, origin_z) = origin;
#}

Patterns like Point(_, origin_y, origin_z) are also used in match expressions.

One case when a tuple struct is very useful is when it has only one element. We call this the ‘newtype’ pattern, because it allows you to create a new type that is distinct from its contained value and also expresses its own semantic meaning:


# #![allow(unused_variables)]
#fn main() {
struct Inches(i32);

let length = Inches(10);

let Inches(integer_length) = length;
println!("length is {} inches", integer_length);
#}

As above, you can extract the inner integer type through a destructuring let. In this case, the let Inches(integer_length) assigns 10 to integer_length. We could have used dot notation to do the same thing:


# #![allow(unused_variables)]
#fn main() {
# struct Inches(i32);
# let length = Inches(10);
let integer_length = length.0;
#}

It's always possible to use a struct instead of a tuple struct, and can be clearer. We could write Color and Point like this instead:


# #![allow(unused_variables)]
#fn main() {
struct Color {
    red: i32,
    blue: i32,
    green: i32,
}

struct Point {
    x: i32,
    y: i32,
    z: i32,
}
#}

Good names are important, and while values in a tuple struct can be referenced with dot notation as well, a struct gives us actual names, rather than positions.

Unit-like structs

You can define a struct with no members at all:

struct Electron {} // Use empty braces...
struct Proton;     // ...or just a semicolon.

// Use the same notation when creating an instance.
let x = Electron {};
let y = Proton;
let z = Electron; // Error

Such a struct is called ‘unit-like’ because it resembles the empty tuple, (), sometimes called ‘unit’. Like a tuple struct, it defines a new type.

This is rarely useful on its own (although sometimes it can serve as a marker type), but in combination with other features, it can become useful. For instance, a library may ask you to create a structure that implements a certain trait to handle events. If you don’t have any data you need to store in the structure, you can create a unit-like struct.

Rust & WebAssembly para JavaScripters

Rust & WebAssembly para JavaScripters

A lo largo de la charla descubriremos las características más destacables de Rust, sus similitudes y diferencias con JavaScript y veremos qué aporta Rust al futuro de la Web gracias a WebAssembly. Rust es un lenguaje tipado, rápido y seguro, que ha sido diseñado por Mozilla como lenguaje de sistemas, aunque en los últimos tiempos ha ganado mucha popularidad en el terreno del desarrollo Web gracias a WebAssembly, su amplio ecosistema y gran comunidad

Rust es un lenguaje tipado, rápido y seguro, que ha sido diseñado por Mozilla como lenguaje de sistemas, aunque en los últimos tiempos ha ganado mucha popularidad en el terreno del desarrollo Web gracias a WebAssembly, su amplio ecosistema y gran comunidad. A lo largo de la charla descubriremos las características más destacables de Rust, sus similitudes y diferencias con JavaScript y veremos qué aporta Rust al futuro de la Web gracias a WebAssembly.

Rust vs. Go: Should I Rust, or Should I Go

Rust vs. Go: Should I Rust, or Should I Go

Well both Rust and Go provide amazing performance. Should you write you’re next big thing with Rust or with Go? Go is fast and powerful, but it avoids bogging the developer down, focusing instead on simplicity and uniformity. Rust. If on the other hand, wringing out every last ounce of performance is a necessity, then Rust should be your choice. Rust is more of a competitor to C++ than it is with Go.

Should I stay, or should I go?” Great song by the band The Clash. I’m listening to it, right now, while I’m writing this article. The song debuted back in 1982, a long time ago. Back then, I was just a kid exploring a new hobby — programming my Atari 2600. The first video game I ever wrote was written using 6502 Assembly for that console. The compiler for it cost about $65, if I recall, which at the time equated to mowing ~13 or so lawns.

The game was simple: using the joystick, maneuver your spaceship through a randomly generated scrolling cave. The cave walls were sinusoidal, scrolling vertically on the left and right sides of the screen, and you had to make sure your craft didn’t crash into them. I know, I know: Not that sophisticated. But I was only ten or eleven years old at the time.

Despite the “power” of the processor, computing sine values at run-time was simply too much for it. So, using my handy Texas Instruments calculator, I pre-calculated a bunch of the sine values, carefully writing them down on paper, and then entering them in as constants for the game. This greatly enhanced the performance of the game, and made it usable.

So what’s my point? What’s any of this got to do with Rust or Go?

Today’s languages are far more advanced than 6502 Assembly, which make it easier to write complex programs. It took a lot of my time to write that game, and I could do it much faster today, with less code than I did back then. But which language today provides that magic combination of simplicity and power?

Well both Rust and Go provide amazing performance. They both compile to machine code, the Holy Grail of performance. And with today’s processing power, developers can do amazing things with either of these languages. So the question is: Should you write you’re next big thing with Rust or with Go?

With a quick search, you can easily find several articles that go into detail about the differences between the two languages. But the focus of this article is the bang for the buck, that magic combination of performance per line of code.

To put it another way, where is that sweet spot of simple code and top-end performance? And in this case, is it Rust, or is it Go?
There really isn’t any argument: Rust is faster than Go. In the benchmarks above, Rust was faster, and in some cases, an order of magnitude faster.

But before you run off choosing to write everything in Rust, consider that Go wasn’t that far behind it in many of those benchmarks, and it’s still much faster than the likes of Java, C#, JavaScript, Python and so on. So in other words, it’s almost a wash between Rust and Go on the axis of performance. Now, if what you’re building needs to wring out every last ounce of performance, then by all means, choose Rust. But if what you need is top-of-the-line performance, then you’ll be ahead of the game choosing either of these two languages.

So then we’re down to the complexity of the code. This is where things can be muddy since this can be more subjective than performance benchmarks. Let’s look at a simple exercise: building a small web server that prints out “Hello World” when it receives an HTTP request. To do this in Rust, it looks something like this:

use std::net::{TcpStream, TcpListener};
use std::io::{Read, Write};
use std::thread;


fn handle_read(mut stream: &TcpStream) {
    let mut buf = [0u8; 4096];
    match stream.read(&mut buf) {
        Ok(_) => {
            let req_str = String::from_utf8_lossy(&buf);
            println!("{}", req_str);
            },
        Err(e) => println!("Unable to read stream: {}", e),
    }
}

fn handle_write(mut stream: TcpStream) {
    let response = b"HTTP/1.1 200 OK\r\nContent-Type: text/html; charset=UTF-8\r\n\r\n<html><body>Hello world</body></html>\r\n";
    match stream.write(response) {
        Ok(n) => println!("Response sent: {} bytes", n),
        Err(e) => println!("Failed sending response: {}", e),
    }
}

fn handle_client(stream: TcpStream) {
    handle_read(&stream);
    handle_write(stream);
}

fn main() {
    let port = "8080";
    let listener = TcpListener::bind(format!("127.0.0.1:{}", port)).unwrap();
    println!("Listening for connections on port {}", port);

    for stream in listener.incoming() {
        match stream {
            Ok(stream) => {
                thread::spawn(|| {
                    handle_client(stream)
                });
            }
            Err(e) => {
                println!("Unable to connect: {}", e);
            }
        }
    }
}

Something pretty similar in Go looks like this:

package main

import (
	"fmt"
	"io"
	"log"
	"net/http"
)

type handler struct{}

func (theHandler *handler) ServeHTTP(writer http.ResponseWriter, request *http.Request) {
	log.Printf("Received request: %s\n", request.URL)
	log.Printf("%v\n", request)
	io.WriteString(writer, "Hello world!")
}

const port = "8080"

func main() {
	server := http.Server{
		Addr:    fmt.Sprintf(":%s", port),
		Handler: &handler{},
	}

	server.ListenAndServe()
}

Now, they are not 100% exactly the same, but they are close enough. The difference between them is ~20 lines of code. Rust definitely forces the developer to consider more, and thus write more code than Go.

Another example: Consider one of the more difficult aspects of software development: multi-threading. When tackling something like this, as you undoubtedly would when building an HTTP server, there’s a lot to think about:

  • You need to ensure everything you design is thread safe (locks)
  • You need to handle communication between threads (channels)
  • You have to design with concurrency and parallelism in mind (threads and routines)

Both Rust and Go handle these hurdles really efficiently, but Go requires less effort. With Rust, you have way more options, and thus more power, when spawning threads. Just look at some of the documentation on this. Here’s just one way to spawn a thread in Rust:

use std::thread;

let handler = thread::spawn(|| {
    // thread code
});

handler.join().unwrap();

On the other hand, here’s how to create something similar using Go:

go someFunction(args)

Another crucial part of writing code is handling errors. Here I think Rust and Go are quite similar. Rust enables the developer to handle errors cases through the use of the enum return types: Option<T>and Result<T, E>. The Option<T> will return either None or Some(T) whereas Result<T, E> will return either Ok(T) or Err(T). Given that most of Rust’s own libraries, as well as other third-party libraries, return one of these types, the developer will usually have to handle the case where nothing is returned, or where an error is returned.

Here’s a simple example of the Result type being returned by a function in Rust:

fn foo_divide(a: f32, b: f32) -> Result<f32, &'static str> {
    if b == 0.0 {
        Err("divide by zero error!")
    } else {
        Ok(a / b)
    }
}fn main() {
    match foo_divide(5.0, 4.0) {
        Err(err) => println!("{}", err),
        Ok(result) => println!("5 / 4 = {}", result),
    }
}

Notice that the Err case must be handled within the match statement.

Go, on the other hand, leaves this more up to the developer, since errors can be ignored using the _. However, idiomatic Go strongly recommends returning an error, especially since functions in Go can return multiple values. Therefore, it’s easy to have functions return their intended value along with an error, if there is one.

Here is the corresponding example from above done in Go:

func fooDivide(a float32, b float32) (float32, error) {
    if b == 0 {
        return 0, errors.New("divide by zero error!")
    }    return a / b, nil
}func main() {
    result, err := fooDivide(5, 4)
    if err != nil {
       log.Printf("an error occurred: %v", err)
    } else {
       log.Printf("The answer is: 5 / 4 = %f", result)
    }
}

Notice that this line:

result, err := fooDivide(5, 4)

could have been written as

result, _ := fooDivide(5, 4)

In the latter case, the error returned would have been ignored.

Honestly, they’re both pretty similar, except for Rust forcing error checking. Otherwise, there’s little difference, and it’s difficult to find an advantage one has over the other. To my eyes, this is a draw.

I could keep going, digging deeper into other language differences. But the bottom line, from threads, to channels, to generics, Rust provides the developer with more options. In this respect, Rust is closer to C++ than Go. Does this make Rust inherently more complex?

I think so, yes.

So here are my recommendations:

  • Either. If you’re building a web service that handles high load, that you want to be able to scale both vertically and horizontally, either language will suit you perfectly.
  • Go. But if you want to write it faster, perhaps because you have many different services to write, or you have a large team of developers, then Go is your language of choice. Go gives you concurrency as a first-class citizen, and does not tolerate unsafe memory access (neither does Rust), but without forcing you to manage every last detail. Go is fast and powerful, but it avoids bogging the developer down, focusing instead on simplicity and uniformity.
  • Rust. If on the other hand, wringing out every last ounce of performance is a necessity, then Rust should be your choice. Rust is more of a competitor to C++ than it is with Go. Having battled with C++, Rust feels just as powerful but with many happy improvements. Rust empowers developers to have control over every last detail of how their threads behave with the rest of the system, how errors should be handled, and even the lifetime of their variables!
  • Rust. Rust was designed to interoperate with C. Go can as well, but gives up a lot to achieve this goal, and it’s not really its focus.
  • Go. If readability is a requirement, go with Go. It’s far too easy to make your code hard for others to grok with Rust.

I hope you enjoyed reading this!

The Rust Programming Language - Understanding If in Rust

The Rust Programming Language - Understanding If in Rust

The Rust Programming Language - Understanding If in Rust. Rust’s take on if is not particularly complex, but it’s much more like the if you’ll find in a dynamically typed language than in a more traditional systems language. if is a specific form of a more general concept, the ‘branch’, whose name comes from a branch in a tree: a decision point, where depending on a choice, multiple paths can be taken.

Rust’s take on if is not particularly complex, but it’s much more like the if you’ll find in a dynamically typed language than in a more traditional systems language. So let’s talk about it, to make sure you grasp the nuances.

if is a specific form of a more general concept, the ‘branch’, whose name comes from a branch in a tree: a decision point, where depending on a choice, multiple paths can be taken.

In the case of if, there is one choice that leads down two paths:


# #![allow(unused_variables)]
#fn main() {
let x = 5;

if x == 5 {
    println!("x is five!");
}
#}

If we changed the value of x to something else, this line would not print. More specifically, if the expression after the if evaluates to true, then the block is executed. If it’s false, then it is not.

If you want something to happen in the false case, use an else:


# #![allow(unused_variables)]
#fn main() {
let x = 5;

if x == 5 {
    println!("x is five!");
} else {
    println!("x is not five :(");
}
#}

If there is more than one case, use an else if:


# #![allow(unused_variables)]
#fn main() {
let x = 5;

if x == 5 {
    println!("x is five!");
} else if x == 6 {
    println!("x is six!");
} else {
    println!("x is not five or six :(");
}
#}

This is all pretty standard. However, you can also do this:


# #![allow(unused_variables)]
#fn main() {
let x = 5;

let y = if x == 5 {
    10
} else {
    15
}; // y: i32
#}

Which we can (and probably should) write like this:


# #![allow(unused_variables)]
#fn main() {
let x = 5;

let y = if x == 5 { 10 } else { 15 }; // y: i32
#}

This works because if is an expression. The value of the expression is the value of the last expression in whichever branch was chosen. An if without an else always results in () as the value.