Macess  Hulk

Macess Hulk

1591235167

How to Use Statement NgIf, Else, Then in Angular

Let’s look at the NgIf directive in this tutorial and uncover how to use it. We’ll also explore using NgIf with the “Else” statement and “Then”, to give you a full guide on how to use it.

You will learn how to show and hide DOM content based on your data, which we can then let NgIf handle and render updates to the DOM for us!

#angular

What is GEEK

Buddha Community

How to Use Statement NgIf, Else, Then in Angular
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Cyril  Parisian

Cyril Parisian

1661092140

Udlib: Header-only Series Of C++20 Usermode Utilities

Overview and roadmap

FeatureAvailability
xorstr
stack strings
rot string
signature scans
segment wrappers
module wrappers
shellcode wrappers
constexpr emittion✅ (clang only)
constexpr fnv-1a hashing
lazy importer🟦 (untested)
disassembler engine
memory scanning utility

ud.hpp

#pragma once
#include <optional>
#include <string>
#include <vector>
#include <array>
#include <algorithm>
#include <string_view>
#include <fstream>
#include <unordered_map>

#include <Windows.h>
#include <winternl.h>

#if defined(_MSC_VER)
#define UD_FORCEINLINE __forceinline
#pragma warning( push )
#pragma warning( disable : 4244 4083 )
#else
#define UD_FORCEINLINE __attribute__( ( always_inline ) )
#endif

#define ud_encode_c( str ) ud::rot::decode( ud::rot::rot_t<str>{ } ).data
#define ud_encode( str ) std::string_view( ud::rot::decode( ud::rot::rot_t<str>{ } ) )

#define ud_xorstr_c( str ) ud::xorstr::decrypt( ud::xorstr::xorstr_t< str, __COUNTER__ + 1 ^ 0x90 >{ } ).data
#define ud_xorstr( str ) std::string_view{ ud::xorstr::decrypt( ud::xorstr::xorstr_t< str, __COUNTER__ + 1 ^ 0x90 >{ } ) }

#define ud_stack_str( str ) ud::details::comp_string_t{ str }.data

#define ud_import( mod, func )	reinterpret_cast< decltype( &func ) >( ud::lazy_import::find_module_export< TEXT( mod ), #func >( ) )
#define ud_first_import( func ) reinterpret_cast< decltype( &func ) >( ud::lazy_import::find_first_export< #func >( ) )

// preprocessed settings due to MSVC (not clang or gcc) throwing errors even in `if constexpr` bodies
#define UD_USE_SEH false

namespace ud
{
    namespace details
    {
        struct LDR_DATA_TABLE_ENTRY32
        {
            LIST_ENTRY in_load_order_links;

            std::uint8_t pad[ 16 ];
            std::uintptr_t dll_base;
            std::uintptr_t entry_point;
            std::size_t size_of_image;

            UNICODE_STRING full_name;
            UNICODE_STRING base_name;
        };

        struct LDR_DATA_TABLE_ENTRY64
        {
            LIST_ENTRY in_load_order_links;
            LIST_ENTRY dummy_0;
            LIST_ENTRY dummy_1;

            std::uintptr_t dll_base;
            std::uintptr_t entry_point;
            union {
                unsigned long size_of_image;
                const char* _dummy;
            };

            UNICODE_STRING full_name;
            UNICODE_STRING base_name;
        };

#if defined( _M_X64 )
        using LDR_DATA_TABLE_ENTRY = LDR_DATA_TABLE_ENTRY64;
#else
        using LDR_DATA_TABLE_ENTRY = LDR_DATA_TABLE_ENTRY32;
#endif

        template < std::size_t sz >
        struct comp_string_t
        {
            std::size_t size = sz;
            char data[ sz ]{ };

            comp_string_t( ) = default;
            consteval explicit comp_string_t( const char( &str )[ sz ] )
            {
                std::copy_n( str, sz, data );
            }

            constexpr explicit operator std::string_view( ) const
            {
                return { data, size };
            }
        };

        template < std::size_t sz >
        struct wcomp_string_t
        {
            std::size_t size = sz;
            wchar_t data[ sz ]{ };

            wcomp_string_t( ) = default;
            consteval explicit wcomp_string_t( const wchar_t( &str )[ sz ] )
            {
                std::copy_n( str, sz, data );
            }

            constexpr explicit operator std::wstring_view( ) const
            {
                return { data, size };
            }
        };

        inline constexpr std::uint64_t multiplier = 0x5bd1e995;
        inline consteval std::uint64_t get_seed( )
        {
            constexpr auto time_str = __TIME__;
            constexpr auto time_len = sizeof( __TIME__ ) - 1;

            constexpr auto time_int = [ ] ( const char* const str, const std::size_t len )
            {
                auto res = 0ull;
                for ( auto i = 0u; i < len; ++i )
                    if ( str[ i ] >= '0' && str[ i ] <= '9' )
                        res = res * 10 + str[ i ] - '0';

                return res;
            }( time_str, time_len );

            return time_int;
        }

        template < auto v >
        struct constant_t
        {
            enum : decltype( v )
            {
                value = v
            };
        };

        template < auto v >
        inline constexpr auto constant_v = constant_t< v >::value;

#undef max
#undef min

        template < std::uint32_t seq >
        consteval std::uint64_t recursive_random( )
        {
            constexpr auto seed = get_seed( );
            constexpr auto mask = std::numeric_limits< std::uint64_t >::max( );

            constexpr auto x = ( ( seq * multiplier ) + seed ) & mask;
            constexpr auto x_prime = ( x >> 0x10 ) | ( x << 0x10 );

            return constant_v< x_prime >;
        }
    }

    namespace rot
    {
        template < details::comp_string_t str >
        struct rot_t
        {
            char rotted[ str.size ];

            [[nodiscard]] consteval const char* encoded( ) const
            {
                return rotted;
            }

            consteval rot_t( )
            {
                for ( auto i = 0u; i < str.size; ++i )
                {
                    const auto c = str.data[ i ];
                    const auto set = c >= 'A' && c <= 'Z' ? 'A' : c >= 'a' && c <= 'z' ? 'a' : c;

                    if ( set == 'a' || set == 'A' )
                        rotted[ i ] = ( c - set - 13 + 26 ) % 26 + set;

                    else
                        rotted[ i ] = c;
                }
            }
        };

        template < details::comp_string_t str >
        UD_FORCEINLINE details::comp_string_t< str.size > decode( rot_t< str > encoded )
        {
            details::comp_string_t< str.size > result{ };

            for ( auto i = 0u; i < str.size; ++i )
            {
                const auto c = encoded.rotted[ i ];
                const auto set = c >= 'A' && c <= 'Z' ? 'A' : c >= 'a' && c <= 'z' ? 'a' : c;

                if ( set == 'a' || set == 'A' )
                    result.data[ i ] = ( c - set - 13 + 26 ) % 26 + set;

                else
                    result.data[ i ] = c;
            }

            return result;
        }
    }

    namespace fnv
    {
        inline constexpr std::uint32_t fnv_1a( const char* const str, const std::size_t size )
        {
            constexpr auto prime = 16777619u;

            std::uint32_t hash = 2166136261;

            for ( auto i = 0u; i < size; ++i )
            {
                hash ^= str[ i ];
                hash *= prime;
            }

            return hash;
        }

        inline constexpr std::uint32_t fnv_1a( const wchar_t* const str, const std::size_t size )
        {
            constexpr auto prime = 16777619u;

            std::uint32_t hash = 2166136261;

            for ( auto i = 0u; i < size; ++i )
            {
                hash ^= static_cast< char >( str[ i ] );
                hash *= prime;
            }

            return hash;
        }

        inline constexpr std::uint32_t fnv_1a( const std::wstring_view str )
        {
            return fnv_1a( str.data( ), str.size( ) );
        }

        inline constexpr std::uint32_t fnv_1a( const std::string_view str )
        {
            return fnv_1a( str.data( ), str.size( ) );
        }

        template < details::comp_string_t str >
        consteval std::uint32_t fnv_1a( )
        {
            return fnv_1a( str.data, str.size );
        }

        template < details::wcomp_string_t str >
        consteval std::uint32_t fnv_1a( )
        {
            return fnv_1a( str.data, str.size );
        }
    }

    namespace xorstr
    {
        template < details::comp_string_t str, std::uint32_t key_multiplier >
        struct xorstr_t
        {
            char xored[ str.size ];

            [[nodiscard]] consteval std::uint64_t xor_key( ) const
            {
                return details::recursive_random< key_multiplier >( );
            }

            consteval xorstr_t( )
            {
                for ( auto i = 0u; i < str.size; ++i )
                    xored[ i ] = str.data[ i ] ^ xor_key( );
            }
        };

        template < details::comp_string_t str, std::uint32_t key_multiplier >
        UD_FORCEINLINE details::comp_string_t< str.size > decrypt( xorstr_t< str, key_multiplier > enc )
        {
            details::comp_string_t< str.size > result{ };

            for ( auto i = 0u; i < str.size; ++i )
            {
                const auto c = enc.xored[ i ];

                result.data[ i ] = c ^ enc.xor_key( );
            }

            return result;
        }
    }

    namespace lazy_import
    {
        UD_FORCEINLINE std::uintptr_t get_module_handle( const std::uint64_t hash )
        {
#if defined( _M_X64 )
            const auto peb = reinterpret_cast< const PEB* >( __readgsqword( 0x60 ) );
#else
            const auto peb = reinterpret_cast< const PEB* >( __readfsdword( 0x30 ) );
#endif

            const auto modules = reinterpret_cast< const LIST_ENTRY* >( peb->Ldr->InMemoryOrderModuleList.Flink );

            for ( auto i = modules->Flink; i != modules; i = i->Flink )
            {
                const auto entry = reinterpret_cast< const details::LDR_DATA_TABLE_ENTRY* >( i );

                const auto name = entry->base_name.Buffer;
                const auto len = entry->base_name.Length;

                if ( fnv::fnv_1a( static_cast< const wchar_t* >( name ), len ) == hash )
                    return entry->dll_base;
            }

            return 0;
        }

        UD_FORCEINLINE void* find_primitive_export( const std::uint64_t dll_hash, const std::uint64_t function_hash )
        {
            const auto module = get_module_handle( dll_hash );

            if ( !module )
                return nullptr;

            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( module );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( module + dos->e_lfanew );

            const auto exports = reinterpret_cast< const IMAGE_EXPORT_DIRECTORY* >( module + nt->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ].VirtualAddress );

            const auto names = reinterpret_cast< const std::uint32_t* >( module + exports->AddressOfNames );
            const auto ordinals = reinterpret_cast< const std::uint16_t* >( module + exports->AddressOfNameOrdinals );
            const auto functions = reinterpret_cast< const std::uint32_t* >( module + exports->AddressOfFunctions );

            for ( auto i = 0u; i < exports->NumberOfNames; ++i )
            {
                const auto name = reinterpret_cast< const char* >( module + names[ i ] );
                std::size_t len = 0;

                for ( ; name[ len ]; ++len );

                if ( fnv::fnv_1a( name, len ) == function_hash )
                    return reinterpret_cast< void* >( module + functions[ ordinals[ i ] ] );
            }

            return nullptr;
        }

        template < details::wcomp_string_t dll_name, details::comp_string_t function_name >
        UD_FORCEINLINE void* find_module_export( )
        {
            return find_primitive_export( fnv::fnv_1a< dll_name >( ), fnv::fnv_1a< function_name >( ) );
        }

        template < details::comp_string_t function_name >
        UD_FORCEINLINE void* find_first_export( )
        {
            constexpr auto function_hash = fnv::fnv_1a< function_name >( );

#if defined( _M_X64 )
            const auto peb = reinterpret_cast< const PEB* >( __readgsqword( 0x60 ) );
#else
            const auto peb = reinterpret_cast< const PEB* >( __readfsdword( 0x30 ) );
#endif

            const auto modules = reinterpret_cast< const LIST_ENTRY* >( peb->Ldr->InMemoryOrderModuleList.Flink );


            for ( auto i = modules->Flink; i != modules; i = i->Flink )
            {
                const auto entry = reinterpret_cast< const details::LDR_DATA_TABLE_ENTRY* >( i );

                const auto name = entry->base_name.Buffer;
                std::size_t len = 0;

                if ( !name )
                    continue;

                for ( ; name[ len ]; ++len );

                if ( const auto exp = find_primitive_export( fnv::fnv_1a( name, len ), function_hash ) )
                    return exp;
            }

            return nullptr;
        }
    }

    template < typename ty = std::uintptr_t >
    std::optional< ty > find_pattern_primitive( const std::uintptr_t start, const std::uintptr_t end, const std::string_view pattern )
    {
        std::vector< std::pair< bool, std::uint8_t > > bytes;

        for ( auto it = pattern.begin( ); it != pattern.end( ); ++it )
        {
            if ( *it == ' ' )
                continue;

            else if ( *it == '?' )
            {
                if ( it + 1 < pattern.end( ) && *( it + 1 ) == '?' )
                {
                    bytes.push_back( { true, 0x00 } );
                    ++it;
                }

                else
                    bytes.push_back( { false, 0x00 } );
            }

            else
            {
                if ( it + 1 == pattern.end( ) )
                    break;

                const auto get_byte = [ ] ( const std::string& x ) -> std::uint8_t
                {
                    return static_cast< std::uint8_t >( std::stoul( x, nullptr, 16 ) );
                };

                bytes.emplace_back( false, get_byte( std::string( it - 1, ( ++it ) + 1 ) ) );
            }
        }

        for ( auto i = reinterpret_cast< const std::uint8_t* >( start ); i < reinterpret_cast< const std::uint8_t* >( end ); )
        {
            auto found = true;
            for ( const auto& [ is_wildcard, byte ] : bytes )
            {
                ++i;

                if ( is_wildcard )
                    continue;

                if ( *i != byte )
                {
                    found = false;
                    break;
                }
            }

            if ( found )
                return ty( i - bytes.size( ) + 1 );
        }

        return std::nullopt;
    }

    struct segment_t
    {
        std::string_view name = "";
        std::uintptr_t start{ }, end{ };
        std::size_t size{ };

        template < typename ty = std::uintptr_t >
        std::optional< ty > find_pattern( const std::string_view pattern ) const
        {
            return find_pattern_primitive< ty >( start, end, pattern );
        }

        explicit segment_t( const std::string_view segment_name )
        {
            init( GetModuleHandle( nullptr ), segment_name );
        }

        segment_t( const void* const module, const std::string_view segment_name )
        {
            init( module, segment_name );
        }

        segment_t( const void* const handle, const IMAGE_SECTION_HEADER* section )
        {
            init( handle, section );
        }

    private:
        void init( const void* const handle, const IMAGE_SECTION_HEADER* section )
        {
            name = std::string_view( reinterpret_cast< const char* >( section->Name ), 8 );
            start = reinterpret_cast< std::uintptr_t >( handle ) + section->VirtualAddress;
            end = start + section->Misc.VirtualSize;
            size = section->Misc.VirtualSize;
        }

        void init( const void* const handle, const std::string_view segment_name )
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( handle );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( reinterpret_cast< const std::uint8_t* >( handle ) + dos->e_lfanew );

            const auto section = reinterpret_cast< const IMAGE_SECTION_HEADER* >( reinterpret_cast< const std::uint8_t* >( &nt->OptionalHeader ) + nt->FileHeader.SizeOfOptionalHeader );

            for ( auto i = 0u; i < nt->FileHeader.NumberOfSections; ++i )
            {
                if ( std::string_view( reinterpret_cast< const char* >( section[ i ].Name ), 8 ).find( segment_name ) != std::string_view::npos )
                {
                    start = reinterpret_cast< std::uintptr_t >( handle ) + section[ i ].VirtualAddress;
                    end = start + section[ i ].Misc.VirtualSize;
                    size = section[ i ].Misc.VirtualSize;
                    name = segment_name;
                    return;
                }
            }
        }
    };

#pragma code_seg( push, ".text" )
    template < auto... bytes>
    struct shellcode_t
    {
        static constexpr std::size_t size = sizeof...( bytes );
        __declspec( allocate( ".text" ) ) static constexpr std::uint8_t data[ ]{ bytes... };
    };
#pragma code_seg( pop )

    template < typename ty, auto... bytes >
    constexpr ty make_shellcode( )
    {
        return reinterpret_cast< const ty >( &shellcode_t< bytes... >::data );
    }

    template < std::uint8_t... bytes >
    UD_FORCEINLINE constexpr void emit( )
    {
#if defined( __clang__ ) || defined( __GNUC__ )
        constexpr std::uint8_t data[ ]{ bytes... };

        for ( auto i = 0u; i < sizeof...( bytes ); ++i )
            __asm volatile( ".byte %c0\t\n" :: "i" ( data[ i ] ) );
#endif
    }

    template < std::size_t size, std::uint32_t seed = __COUNTER__ + 0x69, std::size_t count = 0 >
    UD_FORCEINLINE constexpr void emit_random( )
    {
        if constexpr ( count < size )
        {
            constexpr auto random = details::recursive_random< seed >( );
            emit< static_cast< std::uint8_t >( random ) >( );
            emit_random< size, static_cast< std::uint32_t >( random )* seed, count + 1 >( );
        }
    }

    inline bool is_valid_page( const void* const data, const std::uint32_t flags = PAGE_READWRITE )
    {
        MEMORY_BASIC_INFORMATION mbi{ };

        if ( !VirtualQuery( data, &mbi, sizeof( mbi ) ) )
            return false;

        return mbi.Protect & flags;
    }

    struct export_t
    {
        std::string_view name;
        std::uint16_t ordinal{ };
        std::uintptr_t address{ };
    };

    struct module_t
    {
        std::string name;
        std::uintptr_t start, end;

        segment_t operator[ ]( const std::string_view segment_name ) const
        {
            return { reinterpret_cast< const void* >( start ), segment_name };
        }

        std::vector< export_t > get_exports( ) const
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( start );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( start + dos->e_lfanew );

            const auto directory_header = nt->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ];
            if ( !directory_header.VirtualAddress )
                return { };

            const auto export_dir = reinterpret_cast< const IMAGE_EXPORT_DIRECTORY* >( start + directory_header.VirtualAddress );
            const auto name_table = reinterpret_cast< const std::uint32_t* >( start + export_dir->AddressOfNames );
            const auto ord_table = reinterpret_cast< const std::uint16_t* >( start + export_dir->AddressOfNameOrdinals );
            const auto addr_table = reinterpret_cast< const std::uint32_t* >( start + export_dir->AddressOfFunctions );

            std::vector< export_t > exports( export_dir->NumberOfNames );

            for ( auto i = 0u; i < export_dir->NumberOfNames; ++i )
            {
                const auto name_str = reinterpret_cast< const char* >( start + name_table[ i ] );
                const auto ord = ord_table[ i ];
                const auto addr = start + addr_table[ ord ];

                exports[ i ] = { name_str, ord, addr };
            }

            return exports;
        }

        [[nodiscard]] std::vector< segment_t > get_segments( ) const
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( start );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( start + dos->e_lfanew );

            const auto section = reinterpret_cast< const IMAGE_SECTION_HEADER* >( reinterpret_cast< const std::uint8_t* >( &nt->OptionalHeader ) + nt->FileHeader.SizeOfOptionalHeader );

            std::vector< segment_t > segments;
            segments.reserve( nt->FileHeader.NumberOfSections );

            for ( auto i = 0u; i < nt->FileHeader.NumberOfSections; ++i )
            {
                const segment_t seg( dos, &section[ i ] );
                segments.push_back( seg );
            }

            return segments;
        }

        [[nodiscard]] std::vector< export_t > get_imports( ) const
        {
            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( start );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( start + dos->e_lfanew );

            const auto directory_header = &nt->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_IMPORT ];
            if ( !directory_header->VirtualAddress )
                return { };

            const auto import_dir = reinterpret_cast< const IMAGE_IMPORT_DESCRIPTOR* >( start + directory_header->VirtualAddress );
            std::vector< export_t > imports;

            for ( auto i = 0u;; ++i )
            {
                if ( !import_dir[ i ].OriginalFirstThunk )
                    break;

                const auto directory = &import_dir[ i ];

                const auto name_table = reinterpret_cast< const std::uint32_t* >( start + directory->OriginalFirstThunk );
                const auto addr_table = reinterpret_cast< const std::uint32_t* >( start + directory->FirstThunk );

                for ( auto j = 0u;; ++j )
                {
                    if ( !addr_table[ j ] )
                        break;

                    if ( !name_table[ j ] )
                        continue;

                    std::string_view name_str;

                    constexpr auto name_alignment = 2;

                    const auto addr = &addr_table[ j ];
                    const auto name_ptr = reinterpret_cast< const char* >( start + name_table[ j ] ) + name_alignment;

#if UD_USE_SEH
                    // using SEH here is not a very good solution
					// however, it's faster than querying that page protection to see if it's readable
					__try
					{
						name = name_ptr;
					}
					__except ( EXCEPTION_EXECUTE_HANDLER )
					{
						name = "";
					}
#else
                    // runtime overhead of ~3us compared to SEH on single calls
                    // on bulk calls it can go up to ~300-500us
                    name_str = is_valid_page( name_ptr, PAGE_READONLY ) ? name_ptr : "";
#endif

                    // emplace_back doesn't allow for implicit conversion, so we have to do it manually
                    imports.push_back( { name_str, static_cast< std::uint16_t >( j ), reinterpret_cast< std::uintptr_t >( addr ) } );
                }
            }

            return imports;
        }

        template < typename ty = std::uintptr_t >
        ty get_address( const std::string_view name ) const
        {
            for ( const auto& export_ : get_exports( ) )
            {
                if ( export_.name.find( name ) != std::string_view::npos )
                    return ty( export_.address );
            }

            return 0;
        }

        template < typename ty = std::uintptr_t >
        std::optional< ty > find_pattern( const std::string_view pattern ) const
        {
            return find_pattern_primitive< ty >( start, end, pattern );
        }

        [[nodiscard]] std::vector< std::string_view > get_strings( const std::size_t minimum_size = 0 ) const
        {
            std::vector< std::string_view > result;

            const auto rdata = ( *this )[ ".rdata" ];

            if ( !rdata.size )
                return { };

            const auto start = reinterpret_cast< const std::uint8_t* >( rdata.start );
            const auto end = reinterpret_cast< const std::uint8_t* >( rdata.end );

            for ( auto i = start; i < end; ++i )
            {
                if ( *i == 0 || *i > 127 )
                    continue;

                const auto str = reinterpret_cast< const char* >( i );
                const auto sz = std::strlen( str );

                if ( !sz || sz < minimum_size )
                    continue;

                result.emplace_back( str, sz );
                i += sz;
            }

            return result;
        }

        module_t( )
        {
            init( GetModuleHandle( nullptr ) );
        }

        explicit module_t( void* const handle )
        {
            init( handle );
        }

        explicit module_t( const std::string_view module_name )
        {
            init( GetModuleHandleA( module_name.data( ) ) );
        }

    private:
        void* module;

        void init( void* const handle )
        {
            module = handle;

            const auto dos = reinterpret_cast< const IMAGE_DOS_HEADER* >( handle );
            const auto nt = reinterpret_cast< const IMAGE_NT_HEADERS* >( reinterpret_cast< const std::uint8_t* >( handle ) + dos->e_lfanew );

            start = reinterpret_cast< std::uintptr_t >( handle );
            end = start + nt->OptionalHeader.SizeOfImage;

            char buffer[ MAX_PATH ];
            const auto sz = GetModuleFileNameA( static_cast< HMODULE >( handle ), buffer, MAX_PATH );

            name = sz ? std::string{ buffer, sz } : std::string{ };
        }
    };

    inline std::vector< module_t > get_modules( )
    {
        std::vector< module_t > result;

#if defined( _M_X64 )
        const auto peb = reinterpret_cast< const PEB* >( __readgsqword( 0x60 ) );
#else
        const auto peb = reinterpret_cast< const PEB* >( __readfsdword( 0x30 ) );
#endif

        const auto modules = reinterpret_cast< const LIST_ENTRY* >( peb->Ldr->InMemoryOrderModuleList.Flink );
        for ( auto i = modules->Flink; i != modules; i = i->Flink )
        {
            const auto entry = reinterpret_cast< const LDR_DATA_TABLE_ENTRY* >( i );

            if ( entry->Reserved2[ 0 ] || entry->DllBase )
                result.emplace_back( entry->Reserved2[ 0 ] ? entry->Reserved2[ 0 ] : entry->DllBase );
        }

        return result;
    }

    inline std::optional< module_t > get_module_at_address( const std::uintptr_t address )
    {
        for ( const auto& module : get_modules( ) )
        {
            if ( module.start <= address && address < module.end )
                return module;
        }

        return std::nullopt;
    }

    inline std::optional< export_t > get_export( const std::uintptr_t address )
    {
        for ( const auto& module : get_modules( ) )
        {
            if ( module.start <= address && address < module.end )
            {
                const auto exports = module.get_exports( );
                for ( const auto& export_ : exports )
                {
                    if ( export_.address == address )
                        return export_;
                }
            }
        }

        return std::nullopt;
    }

    template < typename rel_t, typename ty = std::uintptr_t >
    ty calculate_relative( const std::uintptr_t address, const std::uint8_t size, const std::uint8_t offset )
    {
        return ty( address + *reinterpret_cast< rel_t* >( address + offset ) + size );
    }
}

template < std::size_t size >
UD_FORCEINLINE std::ostream& operator<<( std::ostream& os, const ud::details::comp_string_t< size >& str )
{
    return os << std::string_view{ str.data, str.size };
}

#if defined( _MSC_VER )
#pragma warning( pop )
#endif

Author: AmJayden
Source code: https://github.com/AmJayden/udlib

#cpluplus 

Christa  Stehr

Christa Stehr

1598940617

Install Angular - Angular Environment Setup Process

Angular is a TypeScript based framework that works in synchronization with HTML, CSS, and JavaScript. To work with angular, domain knowledge of these 3 is required.

  1. Installing Node.js and npm
  2. Installing Angular CLI
  3. Creating workspace
  4. Deploying your First App

In this article, you will get to know about the Angular Environment setup process. After reading this article, you will be able to install, setup, create, and launch your own application in Angular. So let’s start!!!

Angular environment setup

Install Angular in Easy Steps

For Installing Angular on your Machine, there are 2 prerequisites:

  • Node.js
  • npm Package Manager
Node.js

First you need to have Node.js installed as Angular require current, active LTS or maintenance LTS version of Node.js

Download and Install Node.js version suitable for your machine’s operating system.

Npm Package Manager

Angular, Angular CLI and Angular applications are dependent on npm packages. By installing Node.js, you have automatically installed the npm Package manager which will be the base for installing angular in your system. To check the presence of npm client and Angular version check of npm client, run this command:

  1. npm -v

Installing Angular CLI

  • Open Terminal/Command Prompt
  • To install Angular CLI, run the below command:
  1. npm install -g @angular/cli

installing angular CLI

· After executing the command, Angular CLI will get installed within some time. You can check it using the following command

  1. ng --version

Workspace Creation

Now as your Angular CLI is installed, you need to create a workspace to work upon your application. Methods for it are:

  • Using CLI
  • Using Visual Studio Code
1. Using CLI

To create a workspace:

  • Navigate to the desired directory where you want to create your workspace using cd command in the Terminal/Command prompt
  • Then in the directory write this command on your terminal and provide the name of the app which you want to create. In my case I have mentioned DataFlair:
  1. Ng new YourAppName

create angular workspace

  • After running this command, it will prompt you to select from various options about the CSS and other functionalities.

angular CSS options

  • To leave everything to default, simply press the Enter or the Return key.

angular setup

#angular tutorials #angular cli install #angular environment setup #angular version check #download angular #install angular #install angular cli

Ayyaz Zafar

1624138795

Angular Material Autocomplete - Multiple Use Cases covered

Learn How to use Angular Material Autocomplete Suggestions Search Input. I covered multiple use cases.

Please watch this video. I hope this video would be helpful for you to understand it and use it in your projects

Please subscribe: https://www.youtube.com/channel/UCL5nKCmpReJZZMe9_bYR89w

#angular #angular-material #angular-js #autocomplete #angular-material-autocomplete #angular-tutorial

Roberta  Ward

Roberta Ward

1593184320

Basics of Angular: Part-1

What is Angular? What it does? How we implement it in a project? So, here are some basics of angular to let you learn more about angular.

Angular is a Typescript-based open-source front-end web application platform. The Angular Team at Google and a community of individuals and corporations lead it. Angular lets you extend HTML’s syntax to express your apps’ components clearly. The angular resolves challenges while developing a single page and cross-platform applications. So, here the meaning of the single-page applications in angular is that the index.html file serves the app. And, the index.html file links other files to it.

We build angular applications with basic concepts which are NgModules. It provides a compilation context for components. At the beginning of an angular project, the command-line interface provides a built-in component which is the root component. But, NgModule can add a number of additional components. These can be created through a template or loaded from a router. This is what a compilation context about.

What is a Component in Angular?

Components are key features in Angular. It controls a patch of the screen called a view. A couple of components that we create on our own helps to build a whole application. In the end, the root component or the app component holds our entire application. The component has its business logic that it does to support the view inside the class. The class interacts with the view through an API of properties and methods. All the components added by us in the application are not linked to the index.html. But, they link to the app.component.html through the selectors. A component can be a component and not only a typescript class by adding a decorator @Component. Then, for further access, a class can import it. The decorator contains some metadata like selector, template, and style. Here’s an example of how a component decorator looks like:

@Component({
    selector: 'app-root',
    templateUrl: 'app.component.html',
    styleUrls: ['app.component.scss']
})

Role of App Module

Modules are the package of functionalities of our app. It gives Angular the information about which features does my app has and what feature it uses. It is an empty Typescript class, but we transform it by adding a decorator @NgModule. So, we have four properties that we set up on the object pass to @NgModule. The four properties are declarations, imports, providers, and bootstrap. All the built-in new components add up to the declarations array in @NgModule.

@NgModule({
declarations: [
  AppComponent,
],
imports: [
  BrowserModule,
  HttpClientModule,
  AppRoutingModule,
  FormsModule
],
bootstrap: [AppComponent]
})

What is Data Binding?

Data Binding is the communication between the Typescript code of the component and the template. So, we have different kinds of data binding given below:

  • When there is a requirement to output data from our Typescript code in the HTML template. String interpolation handles this purpose like {{data}} in HTML file. Property Binding is also used for this purpose like [property] = “data”.
  • When we want to trigger any event like clicking a button. Event Binding works while we react to user events like (event) = “expression”.
  • When we can react to user events and output something at the same time. Two-way Binding is used like [(ngModel)] = “data”.

image for understanding data binding

#angular #javascript #tech blogs #user interface (ui) #angular #angular fundamentals #angular tutorial #basics of angular