Deno JS: CRUD and MySQL Connection

A complete guide for developing a backend application with CRUD operations along with database connection to MySQL.

Deno.js is a new backend language based on the javascript framework. Deno is a simple, modern, and secure runtime for JavaScript and TypeScript that uses V8 and is built in Rust. In this tutorial, we’ll learn how to develop a complete CRUD web application using Deno js (Oak as a framework) and using Mysql as database.

Overview

This project takes an example of an Employee object having four attributes id, name, department, and isActive. We will proceed with adding an employee object in our DB and then performing further operations.

Dependencies

No dependency required. Just install Deno using curl -fsSL https://deno.land/x/install/install.sh | shand set up your DENO_INSTALL path in .bashrc.

Configuration File(server.ts):

server.ts is the main configuration file where all the configuration combines such as route definitions, port, and even logging component.

TypeScript

const app = new Application();
const port: number = 8080;
app.use(logger.logger);
app.use(logger.responseTime);
app.use(employeeRouter.routes());
app.use(employeeRouter.allowedMethods());
app.addEventListener("listen", ({ secure, hostname, port }) => {
  const protocol = secure ? "https://" : "http://";
  const url = `${protocol}${hostname ?? "localhost"}:${port}`;
  console.log(
    `${yellow("Listening on:")} ${green(url)}`,
  );
});
await app.listen({ port });

Interface Layer(Employee.ts):

Define your models here for persisting in the database. Here we have created an Employee model in Employee.ts file

TypeScript

export default interface Employee {
  id?: number,
  name?: string,
  department?:string,
  isActive?:boolean
}

Database Layer(client.ts):

Define your SQL Connection and Create table script here.

TypeScript

const client = await new Client();
client.connect({
  hostname: "127.0.0.1",
  username: "your db username",
  password: "your db password",
  db: "",
});
const run = async () => {
  await client.execute(`CREATE DATABASE IF NOT EXISTS ${DATABASE}`);
  await client.execute(`USE ${DATABASE}`);
};
run();
export default client;

#deno #mysql #database #developer

What is GEEK

Buddha Community

Deno JS: CRUD and MySQL Connection

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Joe  Hoppe

Joe Hoppe

1595905879

Best MySQL DigitalOcean Performance – ScaleGrid vs. DigitalOcean Managed Databases

HTML to Markdown

MySQL is the all-time number one open source database in the world, and a staple in RDBMS space. DigitalOcean is quickly building its reputation as the developers cloud by providing an affordable, flexible and easy to use cloud platform for developers to work with. MySQL on DigitalOcean is a natural fit, but what’s the best way to deploy your cloud database? In this post, we are going to compare the top two providers, DigitalOcean Managed Databases for MySQL vs. ScaleGrid MySQL hosting on DigitalOcean.

At a glance – TLDR
ScaleGrid Blog - At a glance overview - 1st pointCompare Throughput
ScaleGrid averages almost 40% higher throughput over DigitalOcean for MySQL, with up to 46% higher throughput in write-intensive workloads. Read now

ScaleGrid Blog - At a glance overview - 2nd pointCompare Latency
On average, ScaleGrid achieves almost 30% lower latency over DigitalOcean for the same deployment configurations. Read now

ScaleGrid Blog - At a glance overview - 3rd pointCompare Pricing
ScaleGrid provides 30% more storage on average vs. DigitalOcean for MySQL at the same affordable price. Read now

MySQL DigitalOcean Performance Benchmark
In this benchmark, we compare equivalent plan sizes between ScaleGrid MySQL on DigitalOcean and DigitalOcean Managed Databases for MySQL. We are going to use a common, popular plan size using the below configurations for this performance benchmark:

Comparison Overview
ScaleGridDigitalOceanInstance TypeMedium: 4 vCPUsMedium: 4 vCPUsMySQL Version8.0.208.0.20RAM8GB8GBSSD140GB115GBDeployment TypeStandaloneStandaloneRegionSF03SF03SupportIncludedBusiness-level support included with account sizes over $500/monthMonthly Price$120$120

As you can see above, ScaleGrid and DigitalOcean offer the same plan configurations across this plan size, apart from SSD where ScaleGrid provides over 20% more storage for the same price.

To ensure the most accurate results in our performance tests, we run the benchmark four times for each comparison to find the average performance across throughput and latency over read-intensive workloads, balanced workloads, and write-intensive workloads.

Throughput
In this benchmark, we measure MySQL throughput in terms of queries per second (QPS) to measure our query efficiency. To quickly summarize the results, we display read-intensive, write-intensive and balanced workload averages below for 150 threads for ScaleGrid vs. DigitalOcean MySQL:

ScaleGrid MySQL vs DigitalOcean Managed Databases - Throughput Performance Graph

For the common 150 thread comparison, ScaleGrid averages almost 40% higher throughput over DigitalOcean for MySQL, with up to 46% higher throughput in write-intensive workloads.

#cloud #database #developer #digital ocean #mysql #performance #scalegrid #95th percentile latency #balanced workloads #developers cloud #digitalocean droplet #digitalocean managed databases #digitalocean performance #digitalocean pricing #higher throughput #latency benchmark #lower latency #mysql benchmark setup #mysql client threads #mysql configuration #mysql digitalocean #mysql latency #mysql on digitalocean #mysql throughput #performance benchmark #queries per second #read-intensive #scalegrid mysql #scalegrid vs. digitalocean #throughput benchmark #write-intensive

Deno JS: CRUD and MySQL Connection

A complete guide for developing a backend application with CRUD operations along with database connection to MySQL.

Deno.js is a new backend language based on the javascript framework. Deno is a simple, modern, and secure runtime for JavaScript and TypeScript that uses V8 and is built in Rust. In this tutorial, we’ll learn how to develop a complete CRUD web application using Deno js (Oak as a framework) and using Mysql as database.

Overview

This project takes an example of an Employee object having four attributes id, name, department, and isActive. We will proceed with adding an employee object in our DB and then performing further operations.

Dependencies

No dependency required. Just install Deno using curl -fsSL https://deno.land/x/install/install.sh | shand set up your DENO_INSTALL path in .bashrc.

Configuration File(server.ts):

server.ts is the main configuration file where all the configuration combines such as route definitions, port, and even logging component.

TypeScript

const app = new Application();
const port: number = 8080;
app.use(logger.logger);
app.use(logger.responseTime);
app.use(employeeRouter.routes());
app.use(employeeRouter.allowedMethods());
app.addEventListener("listen", ({ secure, hostname, port }) => {
  const protocol = secure ? "https://" : "http://";
  const url = `${protocol}${hostname ?? "localhost"}:${port}`;
  console.log(
    `${yellow("Listening on:")} ${green(url)}`,
  );
});
await app.listen({ port });

Interface Layer(Employee.ts):

Define your models here for persisting in the database. Here we have created an Employee model in Employee.ts file

TypeScript

export default interface Employee {
  id?: number,
  name?: string,
  department?:string,
  isActive?:boolean
}

Database Layer(client.ts):

Define your SQL Connection and Create table script here.

TypeScript

const client = await new Client();
client.connect({
  hostname: "127.0.0.1",
  username: "your db username",
  password: "your db password",
  db: "",
});
const run = async () => {
  await client.execute(`CREATE DATABASE IF NOT EXISTS ${DATABASE}`);
  await client.execute(`USE ${DATABASE}`);
};
run();
export default client;

#deno #mysql #database #developer

How to Develop a CRUD web application with Deno.js and Mysql

Deno.js is a new backend language based on the javascript framework. Deno is a simple, modern, and secure runtime for JavaScript and TypeScript that uses V8 and is built in Rust. In this tutorial, we’ll learn how to develop a complete CRUD web application using Deno js (Oak as a framework) and using Mysql as database.

Overview

This project takes an example of an Employee object having four attributes id, name, department, and isActive. We will proceed with adding an employee object in our DB and then performing further operations.

Dependencies

No dependency required. Just install Deno using curl -fsSL https://deno.land/x/install/install.sh | shand set up your DENO_INSTALL path in .bashrc.

Configuration File(server.ts):

server.ts is the main configuration file where all the configuration combines such as route definitions, port, and even logging component.

#typescript #crud #mysql 5.7 #deno #nodejs

PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II

In our previous posts in this series, we spoke at length about using PgBouncer  and Pgpool-II , the connection pool architecture and pros and cons of leveraging one for your PostgreSQL deployment. In our final post, we will put them head-to-head in a detailed feature comparison and compare the results of PgBouncer vs. Pgpool-II performance for your PostgreSQL hosting !

The bottom line – Pgpool-II is a great tool if you need load-balancing and high availability. Connection pooling is almost a bonus you get alongside. PgBouncer does only one thing, but does it really well. If the objective is to limit the number of connections and reduce resource consumption, PgBouncer wins hands down.

It is also perfectly fine to use both PgBouncer and Pgpool-II in a chain – you can have a PgBouncer to provide connection pooling, which talks to a Pgpool-II instance that provides high availability and load balancing. This gives you the best of both worlds!

Using PgBouncer with Pgpool-II - Connection Pooling Diagram

PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II

CLICK TO TWEET

Performance Testing

While PgBouncer may seem to be the better option in theory, theory can often be misleading. So, we pitted the two connection poolers head-to-head, using the standard pgbench tool, to see which one provides better transactions per second throughput through a benchmark test. For good measure, we ran the same tests without a connection pooler too.

Testing Conditions

All of the PostgreSQL benchmark tests were run under the following conditions:

  1. Initialized pgbench using a scale factor of 100.
  2. Disabled auto-vacuuming on the PostgreSQL instance to prevent interference.
  3. No other workload was working at the time.
  4. Used the default pgbench script to run the tests.
  5. Used default settings for both PgBouncer and Pgpool-II, except max_children*. All PostgreSQL limits were also set to their defaults.
  6. All tests ran as a single thread, on a single-CPU, 2-core machine, for a duration of 5 minutes.
  7. Forced pgbench to create a new connection for each transaction using the -C option. This emulates modern web application workloads and is the whole reason to use a pooler!

We ran each iteration for 5 minutes to ensure any noise averaged out. Here is how the middleware was installed:

  • For PgBouncer, we installed it on the same box as the PostgreSQL server(s). This is the configuration we use in our managed PostgreSQL clusters. Since PgBouncer is a very light-weight process, installing it on the box has no impact on overall performance.
  • For Pgpool-II, we tested both when the Pgpool-II instance was installed on the same machine as PostgreSQL (on box column), and when it was installed on a different machine (off box column). As expected, the performance is much better when Pgpool-II is off the box as it doesn’t have to compete with the PostgreSQL server for resources.

Throughput Benchmark

Here are the transactions per second (TPS) results for each scenario across a range of number of clients:

#database #developer #performance #postgresql #connection control #connection pooler #connection pooler performance #connection queue #high availability #load balancing #number of connections #performance testing #pgbench #pgbouncer #pgbouncer and pgpool-ii #pgbouncer vs pgpool #pgpool-ii #pooling modes #postgresql connection pooling #postgresql limits #resource consumption #throughput benchmark #transactions per second #without pooling