Hoang  Ha

Hoang Ha

1641789465

Học RUST từ A-Z: Equality & Ordering - Operation Overloading

LẬP TRÌNH RUST:  Bonus Equality & Ordering - Operation Overloading

Video khoá học về ngôn ngữ lập trình RUST, để lập trình smart contract trên Solana, Near, substrate, game, websites, backend, front-end with Rust.

#solidity #ethereum #crypto #rust #blockchain #programming #developer

What is GEEK

Buddha Community

Học RUST từ A-Z: Equality & Ordering - Operation Overloading
Hoang  Ha

Hoang Ha

1641789465

Học RUST từ A-Z: Equality & Ordering - Operation Overloading

LẬP TRÌNH RUST:  Bonus Equality & Ordering - Operation Overloading

Video khoá học về ngôn ngữ lập trình RUST, để lập trình smart contract trên Solana, Near, substrate, game, websites, backend, front-end with Rust.

#solidity #ethereum #crypto #rust #blockchain #programming #developer

Dylan  Iqbal

Dylan Iqbal

1630996646

A Look at an ES2022 Feature: Class Static Initialization Blocks

ECMAScript class static initialization blocks

Class static blocks provide a mechanism to perform additional static initialization during class definition evaluation.

This is not intended as a replacement for public fields, as they provide useful information for static analysis tools and are a valid target for decorators. Rather, this is intended to augment existing use cases and enable new use cases not currently handled by that proposal.

Status

Stage: 4
Champion: Ron Buckton (@rbuckton)

For detailed status of this proposal see TODO, below.

Authors

  • Ron Buckton (@rbuckton)

Motivations

The current proposals for static fields and static private fields provide a mechanism to perform per-field initialization of the static-side of a class during ClassDefinitionEvaluation, however there are some cases that cannot be covered easily. For example, if you need to evaluate statements during initialization (such as try..catch), or set two fields from a single value, you have to perform that logic outside of the class definition.

// without static blocks:
class C {
  static x = ...;
  static y;
  static z;
}

try {
  const obj = doSomethingWith(C.x);
  C.y = obj.y
  C.z = obj.z;
}
catch {
  C.y = ...;
  C.z = ...;
}

// with static blocks:
class C {
  static x = ...;
  static y;
  static z;
  static {
    try {
      const obj = doSomethingWith(this.x);
      this.y = obj.y;
      this.z = obj.z;
    }
    catch {
      this.y = ...;
      this.z = ...;
    }
  }
}

In addition, there are cases where information sharing needs to occur between a class with an instance private field and another class or function declared in the same scope.

Static blocks provide an opportunity to evaluate statements in the context of the current class declaration, with privileged access to private state (be they instance-private or static-private):

let getX;

export class C {
  #x
  constructor(x) {
    this.#x = { data: x };
  }

  static {
    // getX has privileged access to #x
    getX = (obj) => obj.#x;
  }
}

export function readXData(obj) {
  return getX(obj).data;
}

Relation to "Private Declarations"

The Private Declarations proposal also intends to address the issue of privileged access between two classes, by lifting the private name out of the class declaration and into the enclosing scope. While there is some overlap in that respect, private declarations do not solve the issue of multi-step static initialization without potentially exposing a private name to the outer scope purely for initialization purposes:

// with private declarations
private #z; // exposed purely for post-declaration initialization
class C {
  static y;
  static outer #z;
}
const obj = ...;
C.y = obj.y;
C.#z = obj.z;

// with static block
class C {
  static y;
  static #z; // not exposed outside of class
  static {
    const obj = ...;
    this.y = obj.y;
    this.#z = obj.z;
  }
}

In addition, Private Declarations expose a private name that potentially allows both read and write access to shared private state when read-only access might be desireable. To work around this with private declarations requires additional complexity (though there is a similar cost for static{} as well):

// with private declarations
private #zRead;
class C {
  #z = ...; // only writable inside of the class
  get #zRead() { return this.#z; } // wrapper needed to ensure read-only access
}

// with static
let zRead;
class C {
  #z = ...; // only writable inside of the class
  static { zRead = obj => obj.#z; } // callback needed to ensure read-only access
}

In the long run, however, there is nothing that prevents these two proposals from working side-by-side:

private #shared;
class C {
  static outer #shared;
  static #local;
  static {
    const obj = ...;
    this.#shared = obj.shared;
    this.#local = obj.local;
  }
}
class D {
  method() {
    C.#shared; // ok
    C.#local; // no access
  }
}

Prior Art

Syntax

class C {
  static {
    // statements
  }
}

Semantics

  • A static {} initialization block creates a new lexical scope (e.g. var, function, and block-scoped declarations are local to the static {} initialization block. This lexical scope is nested within the lexical scope of the class body (granting privileged access to instance private state for the class).
  • A class may have any number of static {} initialization blocks in its class body.
  • static {} initialization blocks are evaluated in document order interleaved with static field initializers.
  • A static {} initialization block may not have decorators (instead you would decorate the class itself).
  • When evaluated, a static {} initialization block's this receiver is the constructor object of the class (as with static field initializers).
  • It is a Syntax Error to reference arguments from within a static {} initialization block.
  • It is a Syntax Error to include a SuperCall (i.e., super()) from within a static {} initialization block.
  • A static {} initialization block may contain SuperProperty references as a means to access or invoke static members on a base class that may have been overridden by the derived class containing the static {} initialization block.
  • A static {} initialization block should be represented as an independent stack frame in debuggers and exception traces.

Examples

// "friend" access (same module)
let A, B;
{
  let friendA;

  A = class A {
    #x;

    static {
        friendA = {
          getX(obj) { return obj.#x },
          setX(obj, value) { obj.#x = value }
        };
    }
  };

  B = class B {
    constructor(a) {
      const x = friendA.getX(a); // ok
      friendA.setX(a, x); // ok
    }
  };
}

References

TODO

The following is a high-level list of tasks to progress through each stage of the TC39 proposal process:

Stage 1 Entrance Criteria

  • Identified a "champion" who will advance the addition.
  • Prose outlining the problem or need and the general shape of a solution.
  • Illustrative examples of usage.
  • High-level API.

Stage 2 Entrance Criteria

Stage 3 Entrance Criteria

Stage 4 Entrance Criteria

For up-to-date information on Stage 4 criteria, check: #48

  • Test262 acceptance tests have been written for mainline usage scenarios and merged.
  • Two compatible implementations which pass the acceptance tests:
  • A pull request has been sent to tc39/ecma262 with the integrated spec text.
  • The ECMAScript editor has signed off on the pull request.

Download Details:
Author: tc39
The Demo/Documentation: View The Demo/Documentation
Download Link: Download The Source Code
Official Website: https://github.com/tc39/proposal-class-static-block 
License: BSD-3
#javascript #es2022 #ecmascript 

Serde Rust: Serialization Framework for Rust

Serde

*Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.*

You may be looking for:

Serde in action

Click to show Cargo.toml. Run this code in the playground.

[dependencies]

# The core APIs, including the Serialize and Deserialize traits. Always
# required when using Serde. The "derive" feature is only required when
# using #[derive(Serialize, Deserialize)] to make Serde work with structs
# and enums defined in your crate.
serde = { version = "1.0", features = ["derive"] }

# Each data format lives in its own crate; the sample code below uses JSON
# but you may be using a different one.
serde_json = "1.0"

 

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let point = Point { x: 1, y: 2 };

    // Convert the Point to a JSON string.
    let serialized = serde_json::to_string(&point).unwrap();

    // Prints serialized = {"x":1,"y":2}
    println!("serialized = {}", serialized);

    // Convert the JSON string back to a Point.
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();

    // Prints deserialized = Point { x: 1, y: 2 }
    println!("deserialized = {:?}", deserialized);
}

Getting help

Serde is one of the most widely used Rust libraries so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

Download Details:
Author: serde-rs
Source Code: https://github.com/serde-rs/serde
License: View license

#rust  #rustlang 

35.000+ Tủ locker, tủ nhân viên cao cấp chính hãng l Nam Thuy Corp

35.000+ Tủ locker, tủ nhân viên cao cấp chính hãng l Nam Thuy Corp




 

Việc trang bị tủ locker cho các trường học là điều vô cùng cần thiết để giúp học sinh có ý thức và trách nhiệm hơn trong việc bảo quản tài sản cá nhân.


 

Website: https://namthuycorp.com/danh-muc-san-pham/tu-locker/


 

#tủ_sắt_locker #locker #tu_sat_locker #tu_locker #tủ_locker_sắt #tủ_nhân_viên #tu_locker_sat #tủ_locker_giá_rẻ #tu_locker_gia_re #tủ_cá_nhân_locker #tủ_sắt_nhiều_ngăn #tủ_đựng_đồ_nhân_viên


 

CÔNG TY TNHH QUỐC TẾ NAM THỦY

Công ty thành viên trực thuộc Nam Thủy Group


 

Địa chỉ: SH02-22, Sari Town, KĐT Sala, 10 Mai Chí Thọ,

Phường An Lợi Đông, Quận 2, TP. Hồ Chí Minh


 

Điện thoại: (028) 62700527          Hotline: 0909 420 804


 

Email: info@namthuycorp.com



 

Tủ iLocker

Tủ iLocker mang nhiều đặc điểm nổi bật, cùng các phương thức bảo mật khác nhau như Fingerprint, RFID, Face ID hoặc QR code được xem là giải pháp lưu trữ tối ưu của Smart Locker

#tủ_locker #tủ_sắt_locker   #locker #tu_sat_locker #tu_locker #tủ_locker_sắt #tủ_nhân_viên #tu_locker_sat #tủ_locker_giá rẻ #tu_locker_gia_re #tủ_cá_nhân_locker #tủ_sắt_nhiều_ngăn #tủ_đựng_đồ_nhân_viên

Website: 

tủ locker

tủ sắt locker

locker

tu sat locker

tu locker