1654461960
serverless-http
Please check the examples
folder!
const serverless = require('serverless-http');
const Koa = require('koa'); // or any supported framework
const app = new Koa();
app.use(/* register your middleware as normal */);
// this is it!
module.exports.handler = serverless(app);
// or as a promise
const handler = serverless(app);
module.exports.handler = async (event, context) => {
// you can do other things here
const result = await handler(event, context);
// and here
return result;
};
const serverless = require('serverless-http');
const express = require('express');
const app = express();
app.use(/* register your middleware as normal */);
const handler = serverless(app, { provider: 'azure' });
module.exports.funcName = async (context, req) => {
context.res = await handler(context, req);
}
json-server-less-λ - using serverless-http with json-server and serverless framework in AWS
Your code is running in a serverless environment. You cannot rely on your server being 'up' in the sense that you can/should not use in-memory sessions, web sockets, etc. You are also subject to provider specific restrictions on request/response size, duration, etc.
Think of this as a familiar way of expressing your app logic, not trying to make serverless do something it cannot.
Pull requests are welcome! Especially test scenarios for different situations and configurations.
Here are some more detailed examples and advanced configuration options as well as provider-specific documentation
This module allows you to 'wrap' your API for serverless use. No HTTP server, no ports or sockets. Just your code in the same execution pipeline you are already familiar with.
Thank you to Upstash for reaching out to sponsor this project!
Upstash: Serverless Database for Redis
|
(* Experimental)
Author: Dougmoscrop
Source Code: https://github.com/dougmoscrop/serverless-http
License: View license
#serverless #http #aws #lambda
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1654461960
serverless-http
Please check the examples
folder!
const serverless = require('serverless-http');
const Koa = require('koa'); // or any supported framework
const app = new Koa();
app.use(/* register your middleware as normal */);
// this is it!
module.exports.handler = serverless(app);
// or as a promise
const handler = serverless(app);
module.exports.handler = async (event, context) => {
// you can do other things here
const result = await handler(event, context);
// and here
return result;
};
const serverless = require('serverless-http');
const express = require('express');
const app = express();
app.use(/* register your middleware as normal */);
const handler = serverless(app, { provider: 'azure' });
module.exports.funcName = async (context, req) => {
context.res = await handler(context, req);
}
json-server-less-λ - using serverless-http with json-server and serverless framework in AWS
Your code is running in a serverless environment. You cannot rely on your server being 'up' in the sense that you can/should not use in-memory sessions, web sockets, etc. You are also subject to provider specific restrictions on request/response size, duration, etc.
Think of this as a familiar way of expressing your app logic, not trying to make serverless do something it cannot.
Pull requests are welcome! Especially test scenarios for different situations and configurations.
Here are some more detailed examples and advanced configuration options as well as provider-specific documentation
This module allows you to 'wrap' your API for serverless use. No HTTP server, no ports or sockets. Just your code in the same execution pipeline you are already familiar with.
Thank you to Upstash for reaching out to sponsor this project!
Upstash: Serverless Database for Redis
|
(* Experimental)
Author: Dougmoscrop
Source Code: https://github.com/dougmoscrop/serverless-http
License: View license
1595418900
TLDR - Take existing Express.js apps and host them easily onto cheap, auto-scaling, serverless infrastructure on AWS Lambda and AWS HTTP API with Serverless Express. It’s packed loads of production-ready features, like custom domains, SSL certificates, canary deployments, and costs ~$0.000003 per request.
If you simply want to host a common Express.js Node.js application, have it auto-scale to billions of requests, and charge you only when it’s used, we have something special for you…
Announcing Serverless Express, a Serverless Framework offering enabling you to easily host and manage Express.js applications on AWS Lambda and the new AWS HTTP API, which is 60% faster and 71% cheaper than their initial API Gateway product.
Serverless Expess is a pure Express.js experience and it’s perfect for those that want to focus on apps, not infrastructure complexity.
Here are the highlights:
Here is how to get started and deliver a Serverless Express.js based API with a custom domain, free SSL certificate and much more! You can also check out our Serverless Fullstack Application boilerplate, which includes Serverless Express in a real-world example that features a database, website using React and more.
Serverless Express is a Serverless Framework Component (i.e premium experiences for popular serverless use-cases) and you’ll need to install Node.js and the Serverless Framework CLI to use it.
Install Node.js here.
Then run this command to install Serverless Framework.
npm i -g serverless
Next, install the Serverless Express template:
serverless create --template-url https://github.com/serverless/components/tree/master/templates/express
Lastly, Serverless Express deploys onto your own Amazon Web Services account, so you’ll need Access Keys to an AWS account you own. Follow this guide to create those.
After you have created AWS Access Keys you can add them directly to an .env
file, or reference an AWS Profile in a .env
file, within the root of the template you installed.
AWS_ACCESS_KEY_ID=123456789
AWS_SECRET_ACCESS_KEY=123456789
You can also reference an AWS Profile in a .env
file like this.
AWS_PROFILE=default
If you don’t include a .env
file, the Serverless Framework will automatically look for a default
AWS Profile in the root folder of your machine.
Also, Serverless Framework has a built-in stages
concept. If you change the stage
it will deploy a totally separate copy of your serverless application.
# serverless.yml
component: express@1.0.8
name: express-api
stage: prod
Even better, you can use different .env
files for each stage
by simply using this convention:
.env # all stages
.env.dev # "dev" stage
.env.prod # "prod" stage
One last—often overlooked—step is to install the Express.js dependency, by running npm i
in the template.
#serverless #apis #aws #aws lambda #aws http api
1617016800
In this post, I will show you how to use Amazon S3 Object Lambda to resize images on the fly. The Serverless Framework will be used to define the Infrastructure as Code and to simplify the deployment. Sharp will be used to resize the images. Lambda will be written using the Node.js 14x Lambda runtime
One of the most common Lambda patterns is to transform data stored inside Amazon S3. Generally, a lambda function is invoked after a file has been uploaded. Lambda would retrieve that file, apply any needed transformation (e.g. converting type of file) and store the result in S3.
That pattern was working well, however, it would require some work done onto a file despite that being accessed in the future or not.
If you needed to convert a file on the fly you should have created a Lambda function, invoke it via Amazon API GW and wait for the lambda to perform the transformation.
AWS has recently introduced Amazon S3 Object Lambda in a good post by Danilo Poccia. S3 Object Lambda allows creating a Lambda directly connected to the S3 bucket (using S3 Access Points) that is automatically invoked when retrieving the object from S3!
That means that our application needs only to send an S3 Get Object request to retrieve the original or transformed data
Also, a very important peculiarity of using Amazon S3 Object Lambda it’s that the file you want to retrieve doesn’t need to exist on S3! We will make use of this for our scenario
_Note: High-level AWS CLI S3 commands (e.g.
_aws s3 cp_
) don’t currently support S3 Object Lambda, instead we need to use low-level S3 API commands (e.g. __aws s3api get-object)_
In his post, Danilo highlighted the most common use cases for Amazon S3 Object Lambda:
#aws-lambda #serverless #aws-s3 #aws
1655426640
Serverless M (or Serverless Modular) is a plugin for the serverless framework. This plugins helps you in managing multiple serverless projects with a single serverless.yml file. This plugin gives you a super charged CLI options that you can use to create new features, build them in a single file and deploy them all in parallel
Currently this plugin is tested for the below stack only
Make sure you have the serverless CLI installed
# Install serverless globally
$ npm install serverless -g
To start the serverless modular project locally you can either start with es5 or es6 templates or add it as a plugin
# Step 1. Download the template
$ sls create --template-url https://github.com/aa2kb/serverless-modular/tree/master/template/modular-es6 --path myModularService
# Step 2. Change directory
$ cd myModularService
# Step 3. Create a package.json file
$ npm init
# Step 3. Install dependencies
$ npm i serverless-modular serverless-webpack webpack --save-dev
# Step 1. Download the template
$ sls create --template-url https://github.com/aa2kb/serverless-modular/tree/master/template/modular-es5 --path myModularService
# Step 2. Change directory
$ cd myModularService
# Step 3. Create a package.json file
$ npm init
# Step 3. Install dependencies
$ npm i serverless-modular --save-dev
If you dont want to use the templates above you can just add in your existing project
plugins:
- serverless-modular
Now you are all done to start building your serverless modular functions
The serverless CLI can be accessed by
# Serverless Modular CLI
$ serverless modular
# shorthand
$ sls m
Serverless Modular CLI is based on 4 main commands
sls m init
sls m feature
sls m function
sls m build
sls m deploy
sls m init
The serverless init command helps in creating a basic .gitignore
that is useful for serverless modular.
The basic .gitignore
for serverless modular looks like this
#node_modules
node_modules
#sm main functions
sm.functions.yml
#serverless file generated by build
src/**/serverless.yml
#main serverless directories generated for sls deploy
.serverless
#feature serverless directories generated sls deploy
src/**/.serverless
#serverless logs file generated for main sls deploy
.sm.log
#serverless logs file generated for feature sls deploy
src/**/.sm.log
#Webpack config copied in each feature
src/**/webpack.config.js
The feature command helps in building new features for your project
This command comes with three options
--name: Specify the name you want for your feature
--remove: set value to true if you want to remove the feature
--basePath: Specify the basepath you want for your feature, this base path should be unique for all features. helps in running offline with offline plugin and for API Gateway
options | shortcut | required | values | default value |
---|---|---|---|---|
--name | -n | ✅ | string | N/A |
--remove | -r | ❎ | true, false | false |
--basePath | -p | ❎ | string | same as name |
Creating a basic feature
# Creating a jedi feature
$ sls m feature -n jedi
Creating a feature with different base path
# A feature with different base path
$ sls m feature -n jedi -p tatooine
Deleting a feature
# Anakin is going to delete the jedi feature
$ sls m feature -n jedi -r true
The function command helps in adding new function to a feature
This command comes with four options
--name: Specify the name you want for your function
--feature: Specify the name of the existing feature
--path: Specify the path for HTTP endpoint helps in running offline with offline plugin and for API Gateway
--method: Specify the path for HTTP method helps in running offline with offline plugin and for API Gateway
options | shortcut | required | values | default value |
---|---|---|---|---|
--name | -n | ✅ | string | N/A |
--feature | -f | ✅ | string | N/A |
--path | -p | ❎ | string | same as name |
--method | -m | ❎ | string | 'GET' |
Creating a basic function
# Creating a cloak function for jedi feature
$ sls m function -n cloak -f jedi
Creating a basic function with different path and method
# Creating a cloak function for jedi feature with custom path and HTTP method
$ sls m function -n cloak -f jedi -p powers -m POST
The build command helps in building the project for local or global scope
This command comes with four options
--scope: Specify the scope of the build, use this with "--feature" tag
--feature: Specify the name of the existing feature you want to build
options | shortcut | required | values | default value |
---|---|---|---|---|
--scope | -s | ❎ | string | local |
--feature | -f | ❎ | string | N/A |
Saving build Config in serverless.yml
You can also save config in serverless.yml file
custom:
smConfig:
build:
scope: local
all feature build (local scope)
# Building all local features
$ sls m build
Single feature build (local scope)
# Building a single feature
$ sls m build -f jedi -s local
All features build global scope
# Building all features with global scope
$ sls m build -s global
The deploy command helps in deploying serverless projects to AWS (it uses sls deploy
command)
This command comes with four options
--sm-parallel: Specify if you want to deploy parallel (will only run in parallel when doing multiple deployments)
--sm-scope: Specify if you want to deploy local features or global
--sm-features: Specify the local features you want to deploy (comma separated if multiple)
options | shortcut | required | values | default value |
---|---|---|---|---|
--sm-parallel | ❎ | ❎ | true, false | true |
--sm-scope | ❎ | ❎ | local, global | local |
--sm-features | ❎ | ❎ | string | N/A |
--sm-ignore-build | ❎ | ❎ | string | false |
Saving deploy Config in serverless.yml
You can also save config in serverless.yml file
custom:
smConfig:
deploy:
scope: local
parallel: true
ignoreBuild: true
Deploy all features locally
# deploy all local features
$ sls m deploy
Deploy all features globally
# deploy all global features
$ sls m deploy --sm-scope global
Deploy single feature
# deploy all global features
$ sls m deploy --sm-features jedi
Deploy Multiple features
# deploy all global features
$ sls m deploy --sm-features jedi,sith,dark_side
Deploy Multiple features in sequence
# deploy all global features
$ sls m deploy --sm-features jedi,sith,dark_side --sm-parallel false
Author: aa2kb
Source Code: https://github.com/aa2kb/serverless-modular
License: MIT license