Colleen  Little

Colleen Little

1595813640

This Week in Programming: Clearing up any Confusion around Kubernetes Operators

Earlier this month, Red Hat’s Operator Framework, which consists of the Operator SDK and Operator Lifecycle Manager (OLM), became an incubating project in the Cloud Native Computing Foundation(CNCF). While you can find plenty of examples of CNCF members discussing how the foundation accepts competing projects and is not in the “kingmaking” business, joining the CNCF certainly highlights projects and gives them a bit of a PR boost. For some, it may even give the impression that these projects are the ones to choose, as the vetting process they go through as part of joining the foundation ensures they meet certain standards regarding governance, adoption, security, and so on.

All that said, there’s certainly still plenty of room for disagreement, and this week Rancher Chief Technology Officer Darren Shepherd took to Twitter to express his particular disagreement, or “strong negative reaction” if you will, to Operator Framework’s dominance in discussions around operators. (Rancher, which itself offers a Kubernetes distribution, is about to be acquired by SUSE).

Before we get to that, we need some basic definitions. Operators are “software extensions to Kubernetes that make use of custom resources to manage applications and their components,” according to Kubernetes documentation, and this right here is a key point of Shepherd’s distaste for the Operator Framework project.

“When customers understand the value of operators the concept they immediately think they need operator framework,” he further writes, pointing to the fact that even the “discussion of ‘operator vs helm chart’ [shows] just how confused everyone is.” On this point, even the Red Hat folks we spoke with earlier this month stressed the difference between Helm Charts and operators, offering perhaps another example of the confusion in this realm.

Going beyond the conflation of the idea of the operator with the usage of the Operator Framework, which he rightfully points out as completely unnecessary in the building of a Kubernetes operator, Shepherd takes further issue with the fact that, having been a Red Hat dominated project, the Operator Framework “obviously align with how Red Hat distributes software.” Not that this is a problem, he says, “but the irritating thing is the concept of operators is getting so closely tied to a Red Hat thing that just doesn’t need to be.”

Shepherd is not alone in his sentiment and others point out a variety of tools, including the soon-to-be CNCF sandbox project KUDO and Kubebuilder, upon which Operator Framework is built, among others.

#development #kubernetes #this week in programming

What is GEEK

Buddha Community

This Week in Programming: Clearing up any Confusion around Kubernetes Operators
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Colleen  Little

Colleen Little

1595813640

This Week in Programming: Clearing up any Confusion around Kubernetes Operators

Earlier this month, Red Hat’s Operator Framework, which consists of the Operator SDK and Operator Lifecycle Manager (OLM), became an incubating project in the Cloud Native Computing Foundation(CNCF). While you can find plenty of examples of CNCF members discussing how the foundation accepts competing projects and is not in the “kingmaking” business, joining the CNCF certainly highlights projects and gives them a bit of a PR boost. For some, it may even give the impression that these projects are the ones to choose, as the vetting process they go through as part of joining the foundation ensures they meet certain standards regarding governance, adoption, security, and so on.

All that said, there’s certainly still plenty of room for disagreement, and this week Rancher Chief Technology Officer Darren Shepherd took to Twitter to express his particular disagreement, or “strong negative reaction” if you will, to Operator Framework’s dominance in discussions around operators. (Rancher, which itself offers a Kubernetes distribution, is about to be acquired by SUSE).

Before we get to that, we need some basic definitions. Operators are “software extensions to Kubernetes that make use of custom resources to manage applications and their components,” according to Kubernetes documentation, and this right here is a key point of Shepherd’s distaste for the Operator Framework project.

“When customers understand the value of operators the concept they immediately think they need operator framework,” he further writes, pointing to the fact that even the “discussion of ‘operator vs helm chart’ [shows] just how confused everyone is.” On this point, even the Red Hat folks we spoke with earlier this month stressed the difference between Helm Charts and operators, offering perhaps another example of the confusion in this realm.

Going beyond the conflation of the idea of the operator with the usage of the Operator Framework, which he rightfully points out as completely unnecessary in the building of a Kubernetes operator, Shepherd takes further issue with the fact that, having been a Red Hat dominated project, the Operator Framework “obviously align with how Red Hat distributes software.” Not that this is a problem, he says, “but the irritating thing is the concept of operators is getting so closely tied to a Red Hat thing that just doesn’t need to be.”

Shepherd is not alone in his sentiment and others point out a variety of tools, including the soon-to-be CNCF sandbox project KUDO and Kubebuilder, upon which Operator Framework is built, among others.

#development #kubernetes #this week in programming

Understanding Kubernetes Operators

Automation is one of the fundamental components that makes Kubernetes so robust as a containerization engine. Even complex cloud infrastructure creation can be automated in order to simplify the process of managing cloud deployments. Despite the capability of leveraging so many resources and components to support an application, your cloud environment can still be fairly manageable.

Despite the many tools available on Kubernetes, the effort to make cloud infrastructure management more scalable and automated is ongoing. Kubernetes operator is one of the tools designed to push automation past its limits. You can do so much more without having to rely on manual inputs every time.

Getting to Know Kubernetes Operators

A Kubernetes operator, by definition, is an orchestration framework. It is a tool that lets you orchestrate and maintain cloud infrastructures with little to no human input. Kubernetes define operators as software extensions designed to utilize custom resources to manage applications and their components.

Kubernetes operators are not complex at all. Operators use controllers and the Kubernetes API to handle packaging, deployment, management, and maintenance of applications and the custom resources that they need. The whole process is fully automated, plus you can still rely on _kubectl _tooling for commands and operations.

In other words, an operator is basically a custom Kubernetes controller that integrates custom resources for management purposes. You can define parameters and configurations inside the custom resources directly, and then let the operators translate those parameters and run autonomously. Kubernetes operators’ continuous nature is their defining factor.

#blog #kubernetes #automation #kubernetes api #kubernetes deployment #kubernetes operators

Iliana  Welch

Iliana Welch

1598403960

What Is a Kubernetes Operator and Why it Matters for SRE

Kubernetes is an open-source project that “containerizes” workloads and services and manages deployment and configurations. Released by Google in 2015, Kubernetes is now maintained by the  Cloud Native Computing Foundation. Since its release, it has become a worldwide phenomenon. The majority of cloud-native  companies use it, SaaS vendors offer commercial prebuilt versions, and there’s even an annual  convention!

What has made Kubernetes become such a fundamental service? A major factor is its automation capabilities. Kubernetes can automatically make changes to the configuration of deployed containers or even deploy new containers based on metrics it tracks or requests made by engineers. Having Kubernetes handle these processes saves time, eliminates toil, and increases consistency.

If these benefits sound familiar, it might be because they overlap with the philosophies of SRE. But how do you incorporate the automation of Kubernetes into your SRE practices? In this blog post, we’ll explain the Kubernetes Operator—the Kubernetes function at the heart of customized automation—and discuss how it can evolve your SRE solution.

What the Kubernetes Operator Can Do

In Kubernetes Operators: Automating the Container Orchestration Platform, authors Jason Dobies and Joshua Wood describe an Operator as “an automated Site Reliability Engineer for its application.” Given an SRE’s multifaceted experience and diverse workload, this is a bold statement. So what exactly can the Operator do?

#tutorial #devops #kubernetes #site reliability engineering #site reliability #site reliability engineer #site reliability engineering tools #kubernetes operators #kubernetes operator

Maud  Rosenbaum

Maud Rosenbaum

1601051854

Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.

Stability

In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud