Deploying a Natural JS Inference Model to AWS Lambda

This article is a comprehensive guide that explains how inference models trained using Natural JS are deployed to a key-protected API using AWS Lambda & API gateway. By the end of this article, you should be able to:

  • Understand what is an inference model.
  • Have a basic understanding of ML pipelines and how they relate to inference models.
  • Advantages of deploying inference models inside serverless APIs.
  • Build a serverless API with embedded inference model
  • Deploy a Lambda function protected by API gateway, usage plan, rate limit, and API keys.
  • Automate common tasks related to Lambda function development.

#machine-learning #serverless #programming #javascript #aws

What is GEEK

Buddha Community

Deploying a Natural JS Inference Model to AWS Lambda

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Creating your first AWS Lambda Function in Node.js | Serverless Saturday

In this Serverless Saturday video, we’ll be going over how to create your first AWS Lambda function!
In the next video, we’ll be covering how to set up CI/CD with your AWS Lambda function so stay tuned and make sure to subscribe!

To get started, log-in to your AWS account here: https://aws.amazon.com/console/

Found this video helpful? Feel free to support this channel here: https://ko-fi.com/jacksonyuan

#node.js #node #lambda #aws #aws lambda #serverless

Seamus  Quitzon

Seamus Quitzon

1601341562

AWS Cost Allocation Tags and Cost Reduction

Bob had just arrived in the office for his first day of work as the newly hired chief technical officer when he was called into a conference room by the president, Martha, who immediately introduced him to the head of accounting, Amanda. They exchanged pleasantries, and then Martha got right down to business:

“Bob, we have several teams here developing software applications on Amazon and our bill is very high. We think it’s unnecessarily high, and we’d like you to look into it and bring it under control.”

Martha placed a screenshot of the Amazon Web Services (AWS) billing report on the table and pointed to it.

“This is a problem for us: We don’t know what we’re spending this money on, and we need to see more detail.”

Amanda chimed in, “Bob, look, we have financial dimensions that we use for reporting purposes, and I can provide you with some guidance regarding some information we’d really like to see such that the reports that are ultimately produced mirror these dimensions — if you can do this, it would really help us internally.”

“Bob, we can’t stress how important this is right now. These projects are becoming very expensive for our business,” Martha reiterated.

“How many projects do we have?” Bob inquired.

“We have four projects in total: two in the aviation division and two in the energy division. If it matters, the aviation division has 75 developers and the energy division has 25 developers,” the CEO responded.

Bob understood the problem and responded, “I’ll see what I can do and have some ideas. I might not be able to give you retrospective insight, but going forward, we should be able to get a better idea of what’s going on and start to bring the cost down.”

The meeting ended with Bob heading to find his desk. Cost allocation tags should help us, he thought to himself as he looked for someone who might know where his office is.

#aws #aws cloud #node js #cost optimization #aws cli #well architected framework #aws cost report #cost control #aws cost #aws tags

Michael  Hamill

Michael Hamill

1617331277

Workshop Alert! Deep Learning Model Deployment & Management

The Association of Data Scientists (AdaSci), the premier global professional body of data science and ML practitioners, has announced a hands-on workshop on deep learning model deployment on February 6, Saturday.

Over the last few years, the applications of deep learning models have increased exponentially, with use cases ranging from automated driving, fraud detection, healthcare, voice assistants, machine translation and text generation.

Typically, when data scientists start machine learning model development, they mostly focus on the algorithms to use, feature engineering process, and hyperparameters to make the model more accurate. However, model deployment is the most critical step in the machine learning pipeline. As a matter of fact, models can only be beneficial to a business if deployed and managed correctly. Model deployment or management is probably the most under discussed topic.

In this workshop, the attendees get to learn about ML lifecycle, from gathering data to the deployment of models. Researchers and data scientists can build a pipeline to log and deploy machine learning models. Alongside, they will be able to learn about the challenges associated with machine learning models in production and handling different toolkits to track and monitor these models once deployed.

#hands on deep learning #machine learning model deployment #machine learning models #model deployment #model deployment workshop

Cross-account access to invoke AWS lambda using AWS CDK

If you are here, you may have a pretty good knowledge of how to use AWS CDK for defining cloud infrastructure in code and provisioning it through AWS. So let’s get started on how to grant permission to your lambda function to access the resources in another AWS account.

Let’s say you have two accounts called Account A and Account B, and you need to give permission to lambda function in Account A (ex: 11111111)to access the resources in Account B(22222222). You can easily do this by assuming an IAM Role in Account B and then uses the returned credentials to invoke AWS resources in Account B.

#acces #account #aws #lambda #aws lambda #aws cdk