1600324671
Do you want to get some jokes? Let’s do this with Python, Python provides a module using which you can get any nmber of jokes. Module name is pyjokes. To know more about this module and how to use this check the links below–
Full tutorial-- https://copyassignment.com/get-jokes-with-python/
YouTube Tutorial-- https://youtu.be/3qXxsJRBrdM
Must try…
1586415180
Instagram is the fastest-growing social network, with 1 billion monthly users. It also has the highest engagement rate. To gain followers on Instagram, you’d have to upload engaging content, follow users, like posts, comment on user posts and a whole lot. This can be time-consuming and daunting. But there is hope, you can automate all of these tasks. In this course, we’re going to build an Instagram bot using Python to automate tasks on Instagram.
What you’ll learn:
I got around 500 real followers in 4 days!
Growing an audience is an expensive and painful task. And if you’d like to build an audience that’s relevant to you, and shares common interests, that’s even more difficult. I always saw Instagram has a great way to promote my photos, but I never had more than 380 followers… Every once in a while, I decide to start posting my photos on Instagram again, and I manage to keep posting regularly for a while, but it never lasts more than a couple of months, and I don’t have many followers to keep me motivated and engaged.
The objective of this project is to build a bigger audience and as a plus, maybe drive some traffic to my website where I sell my photos!
A year ago, on my last Instagram run, I got one of those apps that lets you track who unfollowed you. I was curious because in a few occasions my number of followers dropped for no apparent reason. After some research, I realized how some users basically crawl for followers. They comment, like and follow people — looking for a follow back. Only to unfollow them again in the next days.
I can’t say this was a surprise to me, that there were bots in Instagram… It just made me want to build one myself!
And that is why we’re here, so let’s get to it! I came up with a simple bot in Python, while I was messing around with Selenium and trying to figure out some project to use it. Simply put, Selenium is like a browser you can interact with very easily in Python.
Ideally, increasing my Instagram audience will keep me motivated to post regularly. As an extra, I included my website in my profile bio, where people can buy some photos. I think it is a bit of a stretch, but who knows?! My sales are basically zero so far, so it should be easy to track that conversion!
After giving this project some thought, my objective was to increase my audience with relevant people. I want to get followers that actually want to follow me and see more of my work. It’s very easy to come across weird content in the most used hashtags, so I’ve planed this bot to lookup specific hashtags and interact with the photos there. This way, I can be very specific about what kind of interests I want my audience to have. For instance, I really like long exposures, so I can target people who use that hashtag and build an audience around this kind of content. Simple and efficient!
My gallery is a mix of different subjects and styles, from street photography to aerial photography, and some travel photos too. Since it’s my hometown, I also have lots of Lisbon images there. These will be the main topics I’ll use in the hashtags I want to target.
This is not a “get 1000 followers in 24 hours” kind of bot!
I ran the bot a few times in a few different hashtags like “travelblogger”, “travelgram”, “lisbon”, “dronephotography”. In the course of three days I went from 380 to 800 followers. Lots of likes, comments and even some organic growth (people that followed me but were not followed by the bot).
To be clear, I’m not using this bot intensively, as Instagram will stop responding if you run it too fast. It needs to have some sleep commands in between the actions, because after some comments and follows in a short period of time, Instagram stops responding and the bot crashes.
You will be logged into your account, so I’m almost sure that Instagram can know you’re doing something weird if you speed up the process. And most importantly, after doing this for a dozen hashtags, it just gets harder to find new users in the same hashtags. You will need to give it a few days to refresh the user base there.
The most efficient way to get followers in Instagram (apart from posting great photos!) is to follow people. And this bot worked really well for me because I don’t care if I follow 2000 people to get 400 followers.
The bot saves a list with all the users that were followed while it was running, so someday I may actually do something with this list. For instance, I can visit each user profile, evaluate how many followers or posts they have, and decide if I want to keep following them. Or I can get the first picture in their gallery and check its date to see if they are active users.
If we remove the follow action from the bot, I can assure you the growth rate will suffer, as people are less inclined to follow based on a single like or comment.
That’s the debate I had with myself. Even though I truly believe in giving back to the community (I still learn a lot from it too!), there are several paid platforms that do more or less the same as this project. Some are shady, some are used by celebrities. The possibility of starting a similar platform myself, is not off the table yet, so why make the code available?
With that in mind, I decided to add an extra level of difficulty to the process, so I was going to post the code below as an image. I wrote “was”, because meanwhile, I’ve realized the image I’m getting is low quality. Which in turn made me reconsider and post the gist. I’m that nice! The idea behind the image was that if you really wanted to use it, you would have to type the code yourself. And that was my way of limiting the use of this tool to people that actually go through the whole process to create it and maybe even improve it.
I learn a lot more when I type the code myself, instead of copy/pasting scripts. I hope you feel the same way!
The script isn’t as sophisticated as it could be, and I know there’s lots of room to improve it. But hey… it works! I have other projects I want to add to my portfolio, so my time to develop it further is rather limited. Nevertheless, I will try to update this article if I dig deeper.
You’ll need Python (I’m using Python 3.7), Selenium, a browser (in my case I’ll be using Chrome) and… obviously, an Instagram account! Quick overview regarding what the bot will do:
If you reached this paragraph, thank you! You totally deserve to collect your reward! If you find this useful for your profile/brand in any way, do share your experience below :)
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from time import sleep, strftime
from random import randint
import pandas as pd
chromedriver_path = 'C:/Users/User/Downloads/chromedriver_win32/chromedriver.exe' # Change this to your own chromedriver path!
webdriver = webdriver.Chrome(executable_path=chromedriver_path)
sleep(2)
webdriver.get('https://www.instagram.com/accounts/login/?source=auth_switcher')
sleep(3)
username = webdriver.find_element_by_name('username')
username.send_keys('your_username')
password = webdriver.find_element_by_name('password')
password.send_keys('your_password')
button_login = webdriver.find_element_by_css_selector('#react-root > section > main > div > article > div > div:nth-child(1) > div > form > div:nth-child(3) > button')
button_login.click()
sleep(3)
notnow = webdriver.find_element_by_css_selector('body > div:nth-child(13) > div > div > div > div.mt3GC > button.aOOlW.HoLwm')
notnow.click() #comment these last 2 lines out, if you don't get a pop up asking about notifications
In order to use chrome with Selenium, you need to install chromedriver. It’s a fairly simple process and I had no issues with it. Simply install and replace the path above. Once you do that, our variable webdriver will be our Chrome tab.
In cell number 3 you should replace the strings with your own username and the respective password. This is for the bot to type it in the fields displayed. You might have already noticed that when running cell number 2, Chrome opened a new tab. After the password, I’ll define the login button as an object, and in the following line, I click it.
Once you get in inspect mode find the bit of html code that corresponds to what you want to map. Right click it and hover over Copy. You will see that you have some options regarding how you want it to be copied. I used a mix of XPath and css selectors throughout the code (it’s visible in the find_element_ method). It took me a while to get all the references to run smoothly. At points, the css or the xpath directions would fail, but as I adjusted the sleep times, everything started running smoothly.
In this case, I selected “copy selector” and pasted it inside a find_element_ method (cell number 3). It will get you the first result it finds. If it was find_elements_, all elements would be retrieved and you could specify which to get.
Once you get that done, time for the loop. You can add more hashtags in the hashtag_list. If you run it for the first time, you still don’t have a file with the users you followed, so you can simply create prev_user_list as an empty list.
Once you run it once, it will save a csv file with a timestamp with the users it followed. That file will serve as the prev_user_list on your second run. Simple and easy to keep track of what the bot does.
Update with the latest timestamp on the following runs and you get yourself a series of csv backlogs for every run of the bot.
The code is really simple. If you have some basic notions of Python you can probably pick it up quickly. I’m no Python ninja and I was able to build it, so I guess that if you read this far, you are good to go!
hashtag_list = ['travelblog', 'travelblogger', 'traveler']
# prev_user_list = [] - if it's the first time you run it, use this line and comment the two below
prev_user_list = pd.read_csv('20181203-224633_users_followed_list.csv', delimiter=',').iloc[:,1:2] # useful to build a user log
prev_user_list = list(prev_user_list['0'])
new_followed = []
tag = -1
followed = 0
likes = 0
comments = 0
for hashtag in hashtag_list:
tag += 1
webdriver.get('https://www.instagram.com/explore/tags/'+ hashtag_list[tag] + '/')
sleep(5)
first_thumbnail = webdriver.find_element_by_xpath('//*[@id="react-root"]/section/main/article/div[1]/div/div/div[1]/div[1]/a/div')
first_thumbnail.click()
sleep(randint(1,2))
try:
for x in range(1,200):
username = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[1]/h2/a').text
if username not in prev_user_list:
# If we already follow, do not unfollow
if webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[2]/button').text == 'Follow':
webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[2]/button').click()
new_followed.append(username)
followed += 1
# Liking the picture
button_like = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[1]/span[1]/button/span')
button_like.click()
likes += 1
sleep(randint(18,25))
# Comments and tracker
comm_prob = randint(1,10)
print('{}_{}: {}'.format(hashtag, x,comm_prob))
if comm_prob > 7:
comments += 1
webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[1]/span[2]/button/span').click()
comment_box = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[3]/div/form/textarea')
if (comm_prob < 7):
comment_box.send_keys('Really cool!')
sleep(1)
elif (comm_prob > 6) and (comm_prob < 9):
comment_box.send_keys('Nice work :)')
sleep(1)
elif comm_prob == 9:
comment_box.send_keys('Nice gallery!!')
sleep(1)
elif comm_prob == 10:
comment_box.send_keys('So cool! :)')
sleep(1)
# Enter to post comment
comment_box.send_keys(Keys.ENTER)
sleep(randint(22,28))
# Next picture
webdriver.find_element_by_link_text('Next').click()
sleep(randint(25,29))
else:
webdriver.find_element_by_link_text('Next').click()
sleep(randint(20,26))
# some hashtag stops refreshing photos (it may happen sometimes), it continues to the next
except:
continue
for n in range(0,len(new_followed)):
prev_user_list.append(new_followed[n])
updated_user_df = pd.DataFrame(prev_user_list)
updated_user_df.to_csv('{}_users_followed_list.csv'.format(strftime("%Y%m%d-%H%M%S")))
print('Liked {} photos.'.format(likes))
print('Commented {} photos.'.format(comments))
print('Followed {} new people.'.format(followed))
The print statement inside the loop is the way I found to be able to have a tracker that lets me know at what iteration the bot is all the time. It will print the hashtag it’s in, the number of the iteration, and the random number generated for the comment action. I decided not to post comments in every page, so I added three different comments and a random number between 1 and 10 that would define if there was any comment at all, or one of the three. The loop ends, we append the new_followed users to the previous users “database” and saves the new file with the timestamp. You should also get a small report.
And that’s it!
After a few hours without checking the phone, these were the numbers I was getting. I definitely did not expect it to do so well! In about 4 days since I’ve started testing it, I had around 500 new followers, which means I have doubled my audience in a matter of days. I’m curious to see how many of these new followers I will lose in the next days, to see if the growth can be sustainable. I also had a lot more “likes” in my latest photos, but I guess that’s even more expected than the follow backs.
It would be nice to get this bot running in a server, but I have other projects I want to explore, and configuring a server is not one of them! Feel free to leave a comment below, and I’ll do my best to answer your questions.
I’m actually curious to see how long will I keep posting regularly! If you feel like this article was helpful for you, consider thanking me by buying one of my photos.
What do SocialCaptain, Kicksta, Instavast, and many other companies have in common? They all help you reach a greater audience, gain more followers, and get more likes on Instagram while you hardly lift a finger. They do it all through automation, and people pay them a good deal of money for it. But you can do the same thing—for free—using InstaPy!
In this tutorial, you’ll learn how to build a bot with Python and InstaPy, which automates your Instagram activities so that you gain more followers and likes with minimal manual input. Along the way, you’ll learn about browser automation with Selenium and the Page Object Pattern, which together serve as the basis for InstaPy.
In this tutorial, you’ll learn:
You’ll begin by learning how Instagram bots work before you build one.
Table of Contents
Important: Make sure you check Instagram’s Terms of Use before implementing any kind of automation or scraping techniques.
How can an automation script gain you more followers and likes? Before answering this question, think about how an actual person gains more followers and likes.
They do it by being consistently active on the platform. They post often, follow other people, and like and leave comments on other people’s posts. Bots work exactly the same way: They follow, like, and comment on a consistent basis according to the criteria you set.
The better the criteria you set, the better your results will be. You want to make sure you’re targeting the right groups because the people your bot interacts with on Instagram will be more likely to interact with your content.
For example, if you’re selling women’s clothing on Instagram, then you can instruct your bot to like, comment on, and follow mostly women or profiles whose posts include hashtags such as #beauty
, #fashion
, or #clothes
. This makes it more likely that your target audience will notice your profile, follow you back, and start interacting with your posts.
How does it work on the technical side, though? You can’t use the Instagram Developer API since it is fairly limited for this purpose. Enter browser automation. It works in the following way:
https://instagram.com
on the address bar, logs in with your credentials, and starts doing the things you instructed it to do.Next, you’ll build the initial version of your Instagram bot, which will automatically log in to your profile. Note that you won’t use InstaPy just yet.
For this version of your Instagram bot, you’ll be using Selenium, which is the tool that InstaPy uses under the hood.
First, install Selenium. During installation, make sure you also install the Firefox WebDriver since the latest version of InstaPy dropped support for Chrome. This also means that you need the Firefox browser installed on your computer.
Now, create a Python file and write the following code in it:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.get('https://www.instagram.com/')
sleep(5)
browser.close()
Run the code and you’ll see that a Firefox browser opens and directs you to the Instagram login page. Here’s a line-by-line breakdown of the code:
sleep
and webdriver
.browser
.https://www.instagram.com/
on the address bar and hits Enter.This is the Selenium version of Hello, World
. Now you’re ready to add the code that logs in to your Instagram profile. But first, think about how you would log in to your profile manually. You would do the following:
https://www.instagram.com/
.The first step is already done by the code above. Now change it so that it clicks on the login link on the Instagram home page:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
browser.get('https://www.instagram.com/')
login_link = browser.find_element_by_xpath("//a[text()='Log in']")
login_link.click()
sleep(5)
browser.close()
Note the highlighted lines:
<a>
whose text is equal to Log in
. It does this using XPath, but there are a few other methods you could use.<a>
for the login link.Run the script and you’ll see your script in action. It will open the browser, go to Instagram, and click on the login link to go to the login page.
On the login page, there are three important elements:
Next, change the script so that it finds those elements, enters your credentials, and clicks on the login button:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
browser.get('https://www.instagram.com/')
login_link = browser.find_element_by_xpath("//a[text()='Log in']")
login_link.click()
sleep(2)
username_input = browser.find_element_by_css_selector("input[name='username']")
password_input = browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys("<your username>")
password_input.send_keys("<your password>")
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
sleep(5)
browser.close()
Here’s a breakdown of the changes:
<your username>
and <your password>
!Run the script and you’ll be automatically logged in to to your Instagram profile.
You’re off to a good start with your Instagram bot. If you were to continue writing this script, then the rest would look very similar. You would find the posts that you like by scrolling down your feed, find the like button by CSS, click on it, find the comments section, leave a comment, and continue.
The good news is that all of those steps can be handled by InstaPy. But before you jump into using Instapy, there is one other thing that you should know about to better understand how InstaPy works: the Page Object Pattern.
Now that you’ve written the login code, how would you write a test for it? It would look something like the following:
def test_login_page(browser):
browser.get('https://www.instagram.com/accounts/login/')
username_input = browser.find_element_by_css_selector("input[name='username']")
password_input = browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys("<your username>")
password_input.send_keys("<your password>")
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
errors = browser.find_elements_by_css_selector('#error_message')
assert len(errors) == 0
Can you see what’s wrong with this code? It doesn’t follow the DRY principle. That is, the code is duplicated in both the application and the test code.
Duplicating code is especially bad in this context because Selenium code is dependent on UI elements, and UI elements tend to change. When they do change, you want to update your code in one place. That’s where the Page Object Pattern comes in.
With this pattern, you create page object classes for the most important pages or fragments that provide interfaces that are straightforward to program to and that hide the underlying widgetry in the window. With this in mind, you can rewrite the code above and create a HomePage
class and a LoginPage
class:
from time import sleep
class LoginPage:
def __init__(self, browser):
self.browser = browser
def login(self, username, password):
username_input = self.browser.find_element_by_css_selector("input[name='username']")
password_input = self.browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys(username)
password_input.send_keys(password)
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
sleep(5)
class HomePage:
def __init__(self, browser):
self.browser = browser
self.browser.get('https://www.instagram.com/')
def go_to_login_page(self):
self.browser.find_element_by_xpath("//a[text()='Log in']").click()
sleep(2)
return LoginPage(self.browser)
The code is the same except that the home page and the login page are represented as classes. The classes encapsulate the mechanics required to find and manipulate the data in the UI. That is, there are methods and accessors that allow the software to do anything a human can.
One other thing to note is that when you navigate to another page using a page object, it returns a page object for the new page. Note the returned value of go_to_log_in_page()
. If you had another class called FeedPage
, then login()
of the LoginPage
class would return an instance of that: return FeedPage()
.
Here’s how you can put the Page Object Pattern to use:
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
home_page = HomePage(browser)
login_page = home_page.go_to_login_page()
login_page.login("<your username>", "<your password>")
browser.close()
It looks much better, and the test above can now be rewritten to look like this:
def test_login_page(browser):
home_page = HomePage(browser)
login_page = home_page.go_to_login_page()
login_page.login("<your username>", "<your password>")
errors = browser.find_elements_by_css_selector('#error_message')
assert len(errors) == 0
With these changes, you won’t have to touch your tests if something changes in the UI.
For more information on the Page Object Pattern, refer to the official documentation and to Martin Fowler’s article.
Now that you’re familiar with both Selenium and the Page Object Pattern, you’ll feel right at home with InstaPy. You’ll build a basic bot with it next.
Note: Both Selenium and the Page Object Pattern are widely used for other websites, not just for Instagram.
In this section, you’ll use InstaPy to build an Instagram bot that will automatically like, follow, and comment on different posts. First, you’ll need to install InstaPy:
$ python3 -m pip install instapy
This will install instapy
in your system.
Now you can rewrite the code above with InstaPy so that you can compare the two options. First, create another Python file and put the following code in it:
from instapy import InstaPy
InstaPy(username="<your_username>", password="<your_password>").login()
Replace the username and password with yours, run the script, and voilà! With just one line of code, you achieved the same result.
Even though your results are the same, you can see that the behavior isn’t exactly the same. In addition to simply logging in to your profile, InstaPy does some other things, such as checking your internet connection and the status of the Instagram servers. This can be observed directly on the browser or in the logs:
INFO [2019-12-17 22:03:19] [username] -- Connection Checklist [1/3] (Internet Connection Status)
INFO [2019-12-17 22:03:20] [username] - Internet Connection Status: ok
INFO [2019-12-17 22:03:20] [username] - Current IP is "17.283.46.379" and it's from "Germany/DE"
INFO [2019-12-17 22:03:20] [username] -- Connection Checklist [2/3] (Instagram Server Status)
INFO [2019-12-17 22:03:26] [username] - Instagram WebSite Status: Currently Up
Pretty good for one line of code, isn’t it? Now it’s time to make the script do more interesting things than just logging in.
For the purpose of this example, assume that your profile is all about cars, and that your bot is intended to interact with the profiles of people who are also interested in cars.
First, you can like some posts that are tagged #bmw
or #mercedes
using like_by_tags()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
Here, you gave the method a list of tags to like and the number of posts to like for each given tag. In this case, you instructed it to like ten posts, five for each of the two tags. But take a look at what happens after you run the script:
INFO [2019-12-17 22:15:58] [username] Tag [1/2]
INFO [2019-12-17 22:15:58] [username] --> b'bmw'
INFO [2019-12-17 22:16:07] [username] desired amount: 14 | top posts [disabled]: 9 | possible posts: 43726739
INFO [2019-12-17 22:16:13] [username] Like# [1/14]
INFO [2019-12-17 22:16:13] [username] https://www.instagram.com/p/B6MCcGcC3tU/
INFO [2019-12-17 22:16:15] [username] Image from: b'mattyproduction'
INFO [2019-12-17 22:16:15] [username] Link: b'https://www.instagram.com/p/B6MCcGcC3tU/'
INFO [2019-12-17 22:16:15] [username] Description: b'Mal etwas anderes \xf0\x9f\x91\x80\xe2\x98\xba\xef\xb8\x8f Bald ist das komplette Video auf YouTube zu finden (n\xc3\xa4here Infos werden folgen). Vielen Dank an @patrick_jwki @thehuthlife und @christic_ f\xc3\xbcr das bereitstellen der Autos \xf0\x9f\x94\xa5\xf0\x9f\x98\x8d#carporn#cars#tuning#bagged#bmw#m2#m2competition#focusrs#ford#mk3#e92#m3#panasonic#cinematic#gh5s#dji#roninm#adobe#videography#music#bimmer#fordperformance#night#shooting#'
INFO [2019-12-17 22:16:15] [username] Location: b'K\xc3\xb6ln, Germany'
INFO [2019-12-17 22:16:51] [username] --> Image Liked!
INFO [2019-12-17 22:16:56] [username] --> Not commented
INFO [2019-12-17 22:16:57] [username] --> Not following
INFO [2019-12-17 22:16:58] [username] Like# [2/14]
INFO [2019-12-17 22:16:58] [username] https://www.instagram.com/p/B6MDK1wJ-Kb/
INFO [2019-12-17 22:17:01] [username] Image from: b'davs0'
INFO [2019-12-17 22:17:01] [username] Link: b'https://www.instagram.com/p/B6MDK1wJ-Kb/'
INFO [2019-12-17 22:17:01] [username] Description: b'Someone said cloud? \xf0\x9f\xa4\x94\xf0\x9f\xa4\xad\xf0\x9f\x98\x88 \xe2\x80\xa2\n\xe2\x80\xa2\n\xe2\x80\xa2\n\xe2\x80\xa2\n#bmw #bmwrepost #bmwm4 #bmwm4gts #f82 #bmwmrepost #bmwmsport #bmwmperformance #bmwmpower #bmwm4cs #austinyellow #davs0 #mpower_official #bmw_world_ua #bimmerworld #bmwfans #bmwfamily #bimmers #bmwpost #ultimatedrivingmachine #bmwgang #m3f80 #m5f90 #m4f82 #bmwmafia #bmwcrew #bmwlifestyle'
INFO [2019-12-17 22:17:34] [username] --> Image Liked!
INFO [2019-12-17 22:17:37] [username] --> Not commented
INFO [2019-12-17 22:17:38] [username] --> Not following
By default, InstaPy will like the first nine top posts in addition to your amount
value. In this case, that brings the total number of likes per tag to fourteen (nine top posts plus the five you specified in amount
).
Also note that InstaPy logs every action it takes. As you can see above, it mentions which post it liked as well as its link, description, location, and whether the bot commented on the post or followed the author.
You may have noticed that there are delays after almost every action. That’s by design. It prevents your profile from getting banned on Instagram.
Now, you probably don’t want your bot liking inappropriate posts. To prevent that from happening, you can use set_dont_like()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
With this change, posts that have the words naked
or nsfw
in their descriptions won’t be liked. You can flag any other words that you want your bot to avoid.
Next, you can tell the bot to not only like the posts but also to follow some of the authors of those posts. You can do that with set_do_follow()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
If you run the script now, then the bot will follow fifty percent of the users whose posts it liked. As usual, every action will be logged.
You can also leave some comments on the posts. There are two things that you need to do. First, enable commenting with set_do_comment()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
Next, tell the bot what comments to leave with set_comments()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
session.set_comments(["Nice!", "Sweet!", "Beautiful :heart_eyes:"])
Run the script and the bot will leave one of those three comments on half the posts that it interacts with.
Now that you’re done with the basic settings, it’s a good idea to end the session with end()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
session.set_comments(["Nice!", "Sweet!", "Beautiful :heart_eyes:"])
session.end()
This will close the browser, save the logs, and prepare a report that you can see in the console output.
InstaPy is a sizable project that has a lot of thoroughly documented features. The good news is that if you’re feeling comfortable with the features you used above, then the rest should feel pretty similar. This section will outline some of the more useful features of InstaPy.
You can’t scrape Instagram all day, every day. The service will quickly notice that you’re running a bot and will ban some of its actions. That’s why it’s a good idea to set quotas on some of your bot’s actions. Take the following for example:
session.set_quota_supervisor(enabled=True, peak_comments_daily=240, peak_comments_hourly=21)
The bot will keep commenting until it reaches its hourly and daily limits. It will resume commenting after the quota period has passed.
This feature allows you to run your bot without the GUI of the browser. This is super useful if you want to deploy your bot to a server where you may not have or need the graphical interface. It’s also less CPU intensive, so it improves performance. You can use it like so:
session = InstaPy(username='test', password='test', headless_browser=True)
Note that you set this flag when you initialize the InstaPy
object.
Earlier you saw how to ignore posts that contain inappropriate words in their descriptions. What if the description is good but the image itself is inappropriate? You can integrate your InstaPy bot with ClarifAI, which offers image and video recognition services:
session.set_use_clarifai(enabled=True, api_key='<your_api_key>')
session.clarifai_check_img_for(['nsfw'])
Now your bot won’t like or comment on any image that ClarifAI considers NSFW. You get 5,000 free API-calls per month.
It’s often a waste of time to interact with posts by people who have a lot of followers. In such cases, it’s a good idea to set some relationship bounds so that your bot doesn’t waste your precious computing resources:
session.set_relationship_bounds(enabled=True, max_followers=8500)
With this, your bot won’t interact with posts by users who have more than 8,500 followers.
For many more features and configurations in InstaPy, check out the documentation.
InstaPy allows you to automate your Instagram activities with minimal fuss and effort. It’s a very flexible tool with a lot of useful features.
In this tutorial, you learned:
Read the InstaPy documentation and experiment with your bot a little bit. Soon you’ll start getting new followers and likes with a minimal amount of effort. I gained a few new followers myself while writing this tutorial.
Maybe some of you do not agree it is a good way to grow your IG page by using follow for follow method but after a lot of researching I found the proper way to use this method.
I have done and used this strategy for a while and my page visits also followers started growing.
The majority of people failing because they randomly targeting the followers and as a result, they are not coming back to your page. So, the key is to find people those have same interests with you.
If you have a programming page go and search for IG pages which have big programming community and once you find one, don’t send follow requests to followers of this page. Because some of them are not active even maybe fake accounts. So, in order to gain active followers, go the last post of this page and find people who liked the post.
In order to query data from Instagram I am going to use the very cool, yet unofficial, Instagram API written by Pasha Lev.
**Note:**Before you test it make sure you verified your phone number in your IG account.
The program works pretty well so far but in case of any problems I have to put disclaimer statement here:
Disclaimer: This post published educational purposes only as well as to give general information about Instagram API. I am not responsible for any actions and you are taking your own risk.
Let’s start by installing and then logging in with API.
pip install InstagramApi
from InstagramAPI import InstagramAPI
api = InstagramAPI("username", "password")
api.login()
Once you run the program you will see “Login success!” in your console.
We are going to search for some username (your target page) then get most recent post from this user. Then, get users who liked this post. Unfortunately, I can’t find solution how to paginate users so right now it gets about last 500 user.
users_list = []
def get_likes_list(username):
api.login()
api.searchUsername(username)
result = api.LastJson
username_id = result['user']['pk'] # Get user ID
user_posts = api.getUserFeed(username_id) # Get user feed
result = api.LastJson
media_id = result['items'][0]['id'] # Get most recent post
api.getMediaLikers(media_id) # Get users who liked
users = api.LastJson['users']
for user in users: # Push users to list
users_list.append({'pk':user['pk'], 'username':user['username']})
Once we get the users list, it is time to follow these users.
IMPORTANT NOTE: set time limit as much as you can to avoid automation detection.
from time import sleep
following_users = []
def follow_users(users_list):
api.login()
api.getSelfUsersFollowing() # Get users which you are following
result = api.LastJson
for user in result['users']:
following_users.append(user['pk'])
for user in users_list:
if not user['pk'] in following_users: # if new user is not in your following users
print('Following @' + user['username'])
api.follow(user['pk'])
# after first test set this really long to avoid from suspension
sleep(20)
else:
print('Already following @' + user['username'])
sleep(10)
This function will look users which you are following then it will check if this user follows you as well. If user not following you then you are unfollowing as well.
follower_users = []
def unfollow_users():
api.login()
api.getSelfUserFollowers() # Get your followers
result = api.LastJson
for user in result['users']:
follower_users.append({'pk':user['pk'], 'username':user['username']})
api.getSelfUsersFollowing() # Get users which you are following
result = api.LastJson
for user in result['users']:
following_users.append({'pk':user['pk'],'username':user['username']})
for user in following_users:
if not user['pk'] in follower_users: # if the user not follows you
print('Unfollowing @' + user['username'])
api.unfollow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
Here is the full code of this automation
import pprint
from time import sleep
from InstagramAPI import InstagramAPI
import pandas as pd
users_list = []
following_users = []
follower_users = []
class InstaBot:
def __init__(self):
self.api = InstagramAPI("your_username", "your_password")
def get_likes_list(self,username):
api = self.api
api.login()
api.searchUsername(username) #Gets most recent post from user
result = api.LastJson
username_id = result['user']['pk']
user_posts = api.getUserFeed(username_id)
result = api.LastJson
media_id = result['items'][0]['id']
api.getMediaLikers(media_id)
users = api.LastJson['users']
for user in users:
users_list.append({'pk':user['pk'], 'username':user['username']})
bot.follow_users(users_list)
def follow_users(self,users_list):
api = self.api
api.login()
api.getSelfUsersFollowing()
result = api.LastJson
for user in result['users']:
following_users.append(user['pk'])
for user in users_list:
if not user['pk'] in following_users:
print('Following @' + user['username'])
api.follow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
else:
print('Already following @' + user['username'])
sleep(10)
def unfollow_users(self):
api = self.api
api.login()
api.getSelfUserFollowers()
result = api.LastJson
for user in result['users']:
follower_users.append({'pk':user['pk'], 'username':user['username']})
api.getSelfUsersFollowing()
result = api.LastJson
for user in result['users']:
following_users.append({'pk':user['pk'],'username':user['username']})
for user in following_users:
if not user['pk'] in [user['pk'] for user in follower_users]:
print('Unfollowing @' + user['username'])
api.unfollow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
bot = InstaBot()
# To follow users run the function below
# change the username ('instagram') to your target username
bot.get_likes_list('instagram')
# To unfollow users uncomment and run the function below
# bot.unfollow_users()
it will look like this:
some extra functions to play with API:
def get_my_profile_details():
api.login()
api.getSelfUsernameInfo()
result = api.LastJson
username = result['user']['username']
full_name = result['user']['full_name']
profile_pic_url = result['user']['profile_pic_url']
followers = result['user']['follower_count']
following = result['user']['following_count']
media_count = result['user']['media_count']
df_profile = pd.DataFrame(
{'username':username,
'full name': full_name,
'profile picture URL':profile_pic_url,
'followers':followers,
'following':following,
'media count': media_count,
}, index=[0])
df_profile.to_csv('profile.csv', sep='\t', encoding='utf-8')
def get_my_feed():
image_urls = []
api.login()
api.getSelfUserFeed()
result = api.LastJson
# formatted_json_str = pprint.pformat(result)
# print(formatted_json_str)
if 'items' in result.keys():
for item in result['items'][0:5]:
if 'image_versions2' in item.keys():
image_url = item['image_versions2']['candidates'][1]['url']
image_urls.append(image_url)
df_feed = pd.DataFrame({
'image URL':image_urls
})
df_feed.to_csv('feed.csv', sep='\t', encoding='utf-8')
Let’s build an Instagram bot to gain more followers! — I know, I know. That doesn’t sound very ethical, does it? But it’s all justified for educational purposes.
Coding is a super power — we can all agree. That’s why I’ll leave it up to you to not abuse this power. And I trust you’re here to learn how it works. Otherwise, you’d be on GitHub cloning one of the countless Instagram bots there, right?
You’re convinced? — Alright, now let’s go back to unethical practices.
So here’s the deal, we want to build a bot in Python and Selenium that goes on the hashtags we specify, likes random posts, then follows the posters. It does that enough — we get follow backs. Simple as that.
Here’s a pretty twisted detail though: we want to keep track of the users we follow so the bot can unfollow them after the number of days we specify.
So first things first, I want to use a database to keep track of the username and the date added. You might as well save/load from/to a file, but we want this to be ready for more features in case we felt inspired in the future.
So make sure you create a database (I named mine instabot — but you can name it anything you like) and create a table called followed_users within the database with two fields (username, date_added)
Remember the installation path. You’ll need it.
You’ll also need the following python packages:
Alright, so first thing we’ll be doing is creating settings.json. Simply a .json file that will hold all of our settings so we don’t have to dive into the code every time we want to change something.
settings.json:
{
"db": {
"host": "localhost",
"user": "root",
"pass": "",
"database": "instabot"
},
"instagram": {
"user": "",
"pass": ""
},
"config": {
"days_to_unfollow": 1,
"likes_over": 150,
"check_followers_every": 3600,
"hashtags": []
}
}
As you can see, under “db”, we specify the database information. As I mentioned, I used “instabot”, but feel free to use whatever name you want.
You’ll also need to fill Instagram info under “instagram” so the bot can login into your account.
“config” is for our bot’s settings. Here’s what the fields mean:
days_to_unfollow: number of days before unfollowing users
likes_over: ignore posts if the number of likes is above this number
check_followers_every: number of seconds before checking if it’s time to unfollow any of the users
hashtags: a list of strings with the hashtag names the bot should be active on
Now, we want to take these settings and have them inside our code as constants.
Create Constants.py:
import json
INST_USER= INST_PASS= USER= PASS= HOST= DATABASE= POST_COMMENTS= ''
LIKES_LIMIT= DAYS_TO_UNFOLLOW= CHECK_FOLLOWERS_EVERY= 0
HASHTAGS= []
def init():
global INST_USER, INST_PASS, USER, PASS, HOST, DATABASE, LIKES_LIMIT, DAYS_TO_UNFOLLOW, CHECK_FOLLOWERS_EVERY, HASHTAGS
# read file
data = None
with open('settings.json', 'r') as myfile:
data = myfile.read()
obj = json.loads(data)
INST_USER = obj['instagram']['user']
INST_PASS = obj['instagram']['pass']
USER = obj['db']['user']
HOST = obj['db']['host']
PASS = obj['db']['pass']
DATABASE = obj['db']['database']
LIKES_LIMIT = obj['config']['likes_over']
CHECK_FOLLOWERS_EVERY = obj['config']['check_followers_every']
HASHTAGS = obj['config']['hashtags']
DAYS_TO_UNFOLLOW = obj['config']['days_to_unfollow']
the init() function we created reads the data from settings.json and feeds them into the constants we declared.
Alright, time for some architecture. Our bot will mainly operate from a python script with an init and update methods. Create BotEngine.py:
import Constants
def init(webdriver):
return
def update(webdriver):
return
We’ll be back later to put the logic here, but for now, we need an entry point.
Create our entry point, InstaBot.py:
from selenium import webdriver
import BotEngine
chromedriver_path = 'YOUR CHROMEDRIVER PATH'
webdriver = webdriver.Chrome(executable_path=chromedriver_path)
BotEngine.init(webdriver)
BotEngine.update(webdriver)
webdriver.close()
chromedriver_path = ‘YOUR CHROMEDRIVER PATH’ webdriver = webdriver.Chrome(executable_path=chromedriver_path)
BotEngine.init(webdriver)
BotEngine.update(webdriver)
webdriver.close()
Of course, you’ll need to swap “YOUR CHROMEDRIVER PATH” with your actual ChromeDriver path.
We need to create a helper script that will help us calculate elapsed days since a certain date (so we know if we should unfollow user)
Create TimeHelper.py:
import datetime
def days_since_date(n):
diff = datetime.datetime.now().date() - n
return diff.days
Create DBHandler.py. It’ll contain a class that handles connecting to the Database for us.
import mysql.connector
import Constants
class DBHandler:
def __init__(self):
DBHandler.HOST = Constants.HOST
DBHandler.USER = Constants.USER
DBHandler.DBNAME = Constants.DATABASE
DBHandler.PASSWORD = Constants.PASS
HOST = Constants.HOST
USER = Constants.USER
DBNAME = Constants.DATABASE
PASSWORD = Constants.PASS
@staticmethod
def get_mydb():
if DBHandler.DBNAME == '':
Constants.init()
db = DBHandler()
mydb = db.connect()
return mydb
def connect(self):
mydb = mysql.connector.connect(
host=DBHandler.HOST,
user=DBHandler.USER,
passwd=DBHandler.PASSWORD,
database = DBHandler.DBNAME
)
return mydb
As you can see, we’re using the constants we defined.
The class contains a static method get_mydb() that returns a database connection we can use.
Now, let’s define a DB user script that contains the DB operations we need to perform on the user.
Create DBUsers.py:
import datetime, TimeHelper
from DBHandler import *
import Constants
#delete user by username
def delete_user(username):
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
sql = "DELETE FROM followed_users WHERE username = '{0}'".format(username)
cursor.execute(sql)
mydb.commit()
#add new username
def add_user(username):
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
now = datetime.datetime.now().date()
cursor.execute("INSERT INTO followed_users(username, date_added) VALUES(%s,%s)",(username, now))
mydb.commit()
#check if any user qualifies to be unfollowed
def check_unfollow_list():
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
cursor.execute("SELECT * FROM followed_users")
results = cursor.fetchall()
users_to_unfollow = []
for r in results:
d = TimeHelper.days_since_date(r[1])
if d > Constants.DAYS_TO_UNFOLLOW:
users_to_unfollow.append(r[0])
return users_to_unfollow
#get all followed users
def get_followed_users():
users = []
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
cursor.execute("SELECT * FROM followed_users")
results = cursor.fetchall()
for r in results:
users.append(r[0])
return users
Alright, we’re about to start our bot. We’re creating a script called AccountAgent.py that will contain the agent behavior.
Import some modules, some of which we need for later and write a login function that will make use of our webdriver.
Notice that we have to keep calling the sleep function between actions. If we send too many requests quickly, the Instagram servers will be alarmed and will deny any requests you send.
from time import sleep
import datetime
import DBUsers, Constants
import traceback
import random
def login(webdriver):
#Open the instagram login page
webdriver.get('https://www.instagram.com/accounts/login/?source=auth_switcher')
#sleep for 3 seconds to prevent issues with the server
sleep(3)
#Find username and password fields and set their input using our constants
username = webdriver.find_element_by_name('username')
username.send_keys(Constants.INST_USER)
password = webdriver.find_element_by_name('password')
password.send_keys(Constants.INST_PASS)
#Get the login button
try:
button_login = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[4]/button')
except:
button_login = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[6]/button/div')
#sleep again
sleep(2)
#click login
button_login.click()
sleep(3)
#In case you get a popup after logging in, press not now.
#If not, then just return
try:
notnow = webdriver.find_element_by_css_selector(
'body > div.RnEpo.Yx5HN > div > div > div.mt3GC > button.aOOlW.HoLwm')
notnow.click()
except:
return
Also note how we’re getting elements with their xpath. To do so, right click on the element, click “Inspect”, then right click on the element again inside the inspector, and choose Copy->Copy XPath.
Another important thing to be aware of is that element hierarchy change with the page’s layout when you resize or stretch the window. That’s why we’re checking for two different xpaths for the login button.
Now go back to BotEngine.py, we’re ready to login.
Add more imports that we’ll need later and fill in the init function
import AccountAgent, DBUsers
import Constants
import datetime
def init(webdriver):
Constants.init()
AccountAgent.login(webdriver)
def update(webdriver):
return
If you run our entry script now (InstaBot.py) you’ll see the bot logging in.
Perfect, now let’s add a method that will allow us to follow people to AccountAgent.py:
def follow_people(webdriver):
#all the followed user
prev_user_list = DBUsers.get_followed_users()
#a list to store newly followed users
new_followed = []
#counters
followed = 0
likes = 0
#Iterate theough all the hashtags from the constants
for hashtag in Constants.HASHTAGS:
#Visit the hashtag
webdriver.get('https://www.instagram.com/explore/tags/' + hashtag+ '/')
sleep(5)
#Get the first post thumbnail and click on it
first_thumbnail = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/article/div[1]/div/div/div[1]/div[1]/a/div')
first_thumbnail.click()
sleep(random.randint(1,3))
try:
#iterate over the first 200 posts in the hashtag
for x in range(1,200):
t_start = datetime.datetime.now()
#Get the poster's username
username = webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[1]/h2/a').text
likes_over_limit = False
try:
#get number of likes and compare it to the maximum number of likes to ignore post
likes = int(webdriver.find_element_by_xpath(
'/html/body/div[3]/div[2]/div/article/div[2]/section[2]/div/div/button/span').text)
if likes > Constants.LIKES_LIMIT:
print("likes over {0}".format(Constants.LIKES_LIMIT))
likes_over_limit = True
print("Detected: {0}".format(username))
#If username isn't stored in the database and the likes are in the acceptable range
if username not in prev_user_list and not likes_over_limit:
#Don't press the button if the text doesn't say follow
if webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[2]/button').text == 'Follow':
#Use DBUsers to add the new user to the database
DBUsers.add_user(username)
#Click follow
webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[2]/button').click()
followed += 1
print("Followed: {0}, #{1}".format(username, followed))
new_followed.append(username)
# Liking the picture
button_like = webdriver.find_element_by_xpath(
'/html/body/div[3]/div[2]/div/article/div[2]/section[1]/span[1]/button')
button_like.click()
likes += 1
print("Liked {0}'s post, #{1}".format(username, likes))
sleep(random.randint(5, 18))
# Next picture
webdriver.find_element_by_link_text('Next').click()
sleep(random.randint(20, 30))
except:
traceback.print_exc()
continue
t_end = datetime.datetime.now()
#calculate elapsed time
t_elapsed = t_end - t_start
print("This post took {0} seconds".format(t_elapsed.total_seconds()))
except:
traceback.print_exc()
continue
#add new list to old list
for n in range(0, len(new_followed)):
prev_user_list.append(new_followed[n])
print('Liked {} photos.'.format(likes))
print('Followed {} new people.'.format(followed))
It’s pretty long, but generally here’s the steps of the algorithm:
For every hashtag in the hashtag constant list:
Now we might as well implement the unfollow method, hopefully the engine will be feeding us the usernames to unfollow in a list:
def unfollow_people(webdriver, people):
#if only one user, append in a list
if not isinstance(people, (list,)):
p = people
people = []
people.append(p)
for user in people:
try:
webdriver.get('https://www.instagram.com/' + user + '/')
sleep(5)
unfollow_xpath = '//*[@id="react-root"]/section/main/div/header/section/div[1]/div[1]/span/span[1]/button'
unfollow_confirm_xpath = '/html/body/div[3]/div/div/div[3]/button[1]'
if webdriver.find_element_by_xpath(unfollow_xpath).text == "Following":
sleep(random.randint(4, 15))
webdriver.find_element_by_xpath(unfollow_xpath).click()
sleep(2)
webdriver.find_element_by_xpath(unfollow_confirm_xpath).click()
sleep(4)
DBUsers.delete_user(user)
except Exception:
traceback.print_exc()
continue
Now we can finally go back and finish the bot by implementing the rest of BotEngine.py:
import AccountAgent, DBUsers
import Constants
import datetime
def init(webdriver):
Constants.init()
AccountAgent.login(webdriver)
def update(webdriver):
#Get start of time to calculate elapsed time later
start = datetime.datetime.now()
#Before the loop, check if should unfollow anyone
_check_follow_list(webdriver)
while True:
#Start following operation
AccountAgent.follow_people(webdriver)
#Get the time at the end
end = datetime.datetime.now()
#How much time has passed?
elapsed = end - start
#If greater than our constant to check on
#followers, check on followers
if elapsed.total_seconds() >= Constants.CHECK_FOLLOWERS_EVERY:
#reset the start variable to now
start = datetime.datetime.now()
#check on followers
_check_follow_list(webdriver)
def _check_follow_list(webdriver):
print("Checking for users to unfollow")
#get the unfollow list
users = DBUsers.check_unfollow_list()
#if there's anyone in the list, start unfollowing operation
if len(users) > 0:
AccountAgent.unfollow_people(webdriver, users)
And that’s it — now you have yourself a fully functional Instagram bot built with Python and Selenium. There are many possibilities for you to explore now, so make sure you’re using this newly gained skill to solve real life problems!
You can get the source code for the whole project from this GitHub repository.
Here we build a simple bot using some simple Python which beginner to intermediate coders can follow.
Here’s the code on GitHub
https://github.com/aj-4/ig-followers
Source Code: https://github.com/jg-fisher/instagram-bot
How to Get Instagram Followers/Likes Using Python
In this video I show you how to program your own Instagram Bot using Python and Selenium.
https://www.youtube.com/watch?v=BGU2X5lrz9M
Code Link:
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
import random
import sys
def print_same_line(text):
sys.stdout.write('\r')
sys.stdout.flush()
sys.stdout.write(text)
sys.stdout.flush()
class InstagramBot:
def __init__(self, username, password):
self.username = username
self.password = password
self.driver = webdriver.Chrome()
def closeBrowser(self):
self.driver.close()
def login(self):
driver = self.driver
driver.get("https://www.instagram.com/")
time.sleep(2)
login_button = driver.find_element_by_xpath("//a[@href='/accounts/login/?source=auth_switcher']")
login_button.click()
time.sleep(2)
user_name_elem = driver.find_element_by_xpath("//input[@name='username']")
user_name_elem.clear()
user_name_elem.send_keys(self.username)
passworword_elem = driver.find_element_by_xpath("//input[@name='password']")
passworword_elem.clear()
passworword_elem.send_keys(self.password)
passworword_elem.send_keys(Keys.RETURN)
time.sleep(2)
def like_photo(self, hashtag):
driver = self.driver
driver.get("https://www.instagram.com/explore/tags/" + hashtag + "/")
time.sleep(2)
# gathering photos
pic_hrefs = []
for i in range(1, 7):
try:
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
# get tags
hrefs_in_view = driver.find_elements_by_tag_name('a')
# finding relevant hrefs
hrefs_in_view = [elem.get_attribute('href') for elem in hrefs_in_view
if '.com/p/' in elem.get_attribute('href')]
# building list of unique photos
[pic_hrefs.append(href) for href in hrefs_in_view if href not in pic_hrefs]
# print("Check: pic href length " + str(len(pic_hrefs)))
except Exception:
continue
# Liking photos
unique_photos = len(pic_hrefs)
for pic_href in pic_hrefs:
driver.get(pic_href)
time.sleep(2)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
try:
time.sleep(random.randint(2, 4))
like_button = lambda: driver.find_element_by_xpath('//span[@aria-label="Like"]').click()
like_button().click()
for second in reversed(range(0, random.randint(18, 28))):
print_same_line("#" + hashtag + ': unique photos left: ' + str(unique_photos)
+ " | Sleeping " + str(second))
time.sleep(1)
except Exception as e:
time.sleep(2)
unique_photos -= 1
if __name__ == "__main__":
username = "USERNAME"
password = "PASSWORD"
ig = InstagramBot(username, password)
ig.login()
hashtags = ['amazing', 'beautiful', 'adventure', 'photography', 'nofilter',
'newyork', 'artsy', 'alumni', 'lion', 'best', 'fun', 'happy',
'art', 'funny', 'me', 'followme', 'follow', 'cinematography', 'cinema',
'love', 'instagood', 'instagood', 'followme', 'fashion', 'sun', 'scruffy',
'street', 'canon', 'beauty', 'studio', 'pretty', 'vintage', 'fierce']
while True:
try:
# Choose a random tag from the list of tags
tag = random.choice(hashtags)
ig.like_photo(tag)
except Exception:
ig.closeBrowser()
time.sleep(60)
ig = InstagramBot(username, password)
ig.login()
Build An INSTAGRAM Bot With Python That Gets You Followers
Instagram Automation Using Python
How to Create an Instagram Bot | Get More Followers
Building a simple Instagram Influencer Bot with Python tutorial
#python #chatbot #web-development
1657081614
In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation
Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.
Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.
Sheet: A sheet is a single page composed of cells for organizing data.
Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.
Row: A row is a horizontal line represented by a number (1,2, etc.).
Column: A column is a vertical line represented by a capital letter (A, B, etc.).
Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.
pip install openpyxl
We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook()
which creates a new workbook.
from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method
ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position
#Renaming the sheet
ws.title = "Example"
#save the workbook
wb.save(filename = "example.xlsx")
We load the file using the function load_Workbook()
which takes the filename as an argument. The file must be saved in the same working directory.
#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")
#getting sheet names
wb.sheetnames
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']
#getting a particular sheet
sheet1 = wb["sheet2"]
#getting sheet title
sheet1.title
result = 'sheet2'
#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'
#get a cell from the sheet
sheet1["A1"] <
Cell 'Sheet1'.A1 >
#get the cell value
ws["A1"].value 'Segment'
#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)
d.value
10
#looping through each row and column
for x in range(1, 5):
for y in range(1, 5):
print(x, y, ws.cell(row = x, column = y)
.value)
#getting the highest row number
ws.max_row
701
#getting the highest column number
ws.max_column
19
There are two functions for iterating through rows and columns.
Iter_rows() => returns the rows
Iter_cols() => returns the columns {
min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.
Example:
#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
for cell in row:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C3 >
#iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
for cell in col:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.C3 >
To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.
Example:
for row in ws.values:
for value in row:
print(value)
Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.
#creates a new workbook
wb = openpyxl.Workbook()
#saving the workbook
wb.save("new.xlsx")
#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")
#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")
#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']
#deleting a sheet
del wb['sheet 0']
#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']
#checking the sheet value
ws['B2'].value
null
#adding value to cell
ws['B2'] = 367
#checking value
ws['B2'].value
367
We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.
For example:
import openpyxl
from openpyxl
import Workbook
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
ws['A9'] = '=SUM(A2:A8)'
wb.save("new2.xlsx")
The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.
Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().
For example:
Merge cells
#merge cells B2 to C9
ws.merge_cells('B2:C9')
ws['B2'] = "Merged cells"
Adding the above code to the previous example will merge cells as below.
#unmerge cells B2 to C9
ws.unmerge_cells('B2:C9')
The above code will unmerge cells from B2 to C9.
To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.
Example:
import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3
ws.add_image(img, 'A3')
wb.save("new2.xlsx")
Result:
Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:
Example
import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series
wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active
values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
chart.add_data(values)
ws.add_chart(chart, "E3")
wb.save("MyChart.xlsx")
Result
Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.
⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling
📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial
Subscribe: https://www.youtube.com/c/TechWithTim/featured
1626775355
No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas.
By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities.
Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly.
Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.
Robust frameworks
Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions.
Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events.
Simple to read and compose
Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building.
The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties.
Utilized by the best
Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player.
Massive community support
Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions.
Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking.
Progressive applications
Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.
The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.
Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential.
The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.
#python development services #python development company #python app development #python development #python in web development #python software development
1670560264
Learn how to use Python arrays. Create arrays in Python using the array module. You'll see how to define them and the different methods commonly used for performing operations on them.
The artcile covers arrays that you create by importing the array module
. We won't cover NumPy arrays here.
Let's get started!
Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.
Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.
Lists are one of the most common data structures in Python, and a core part of the language.
Lists and arrays behave similarly.
Just like arrays, lists are an ordered sequence of elements.
They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.
However, lists and arrays are not the same thing.
Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.
As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.
Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module
in order to be used.
Arrays of the array module
are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.
They are also more compact and take up less memory and space which makes them more size efficient compared to lists.
If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.
In order to create Python arrays, you'll first have to import the array module
which contains all the necassary functions.
There are three ways you can import the array module
:
import array
at the top of the file. This includes the module array
. You would then go on to create an array using array.array()
.import array
#how you would create an array
array.array()
array.array()
all the time, you could use import array as arr
at the top of the file, instead of import array
alone. You would then create an array by typing arr.array()
. The arr
acts as an alias name, with the array constructor then immediately following it.import array as arr
#how you would create an array
arr.array()
from array import *
, with *
importing all the functionalities available. You would then create an array by writing the array()
constructor alone.from array import *
#how you would create an array
array()
Once you've imported the array module
, you can then go on to define a Python array.
The general syntax for creating an array looks like this:
variable_name = array(typecode,[elements])
Let's break it down:
variable_name
would be the name of the array.typecode
specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.elements
that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode)
alone, without any elements.Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:
TYPECODE | C TYPE | PYTHON TYPE | SIZE |
---|---|---|---|
'b' | signed char | int | 1 |
'B' | unsigned char | int | 1 |
'u' | wchar_t | Unicode character | 2 |
'h' | signed short | int | 2 |
'H' | unsigned short | int | 2 |
'i' | signed int | int | 2 |
'I' | unsigned int | int | 2 |
'l' | signed long | int | 4 |
'L' | unsigned long | int | 4 |
'q' | signed long long | int | 8 |
'Q' | unsigned long long | int | 8 |
'f' | float | float | 4 |
'd' | double | float | 8 |
Tying everything together, here is an example of how you would define an array in Python:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
Let's break it down:
import array as arr
.numbers
array.arr.array()
because of import array as arr
.array()
constructor, we first included i
, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H
for example, would mean that no negative values are allowed.Keep in mind that if you tried to include values that were not of i
typecode, meaning they were not integer values, you would get an error:
import array as arr
numbers = arr.array('i',[10.0,20,30])
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
# numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer
In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.
Another way to create an array is the following:
from array import *
#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])
print(numbers)
#output
#array('d', [10.0, 20.0, 30.0])
The example above imported the array module
via from array import *
and created an array numbers
of float data type. This means that it holds only floating point numbers, which is specified with the 'd'
typecode.
To find out the exact number of elements contained in an array, use the built-in len()
method.
It will return the integer number that is equal to the total number of elements in the array you specify.
import array as arr
numbers = arr.array('i',[10,20,30])
print(len(numbers))
#output
# 3
In the example above, the array contained three elements – 10, 20, 30
– so the length of numbers
is 3
.
Each item in an array has a specific address. Individual items are accessed by referencing their index number.
Indexing in Python, and in all programming languages and computing in general, starts at 0
. It is important to remember that counting starts at 0
and not at 1
.
To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.
The general syntax would look something like this:
array_name[index_value_of_item]
Here is how you would access each individual element in an array:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element
#output
#10
#20
#30
Remember that the index value of the last element of an array is always one less than the length of the array. Where n
is the length of the array, n - 1
will be the index value of the last item.
Note that you can also access each individual element using negative indexing.
With negative indexing, the last element would have an index of -1
, the second to last element would have an index of -2
, and so on.
Here is how you would get each item in an array using that method:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
#output
#30
#20
#10
You can find out an element's index number by using the index()
method.
You pass the value of the element being searched as the argument to the method, and the element's index number is returned.
import array as arr
numbers = arr.array('i',[10,20,30])
#search for the index of the value 10
print(numbers.index(10))
#output
#0
If there is more than one element with the same value, the index of the first instance of the value will be returned:
import array as arr
numbers = arr.array('i',[10,20,30,10,20,30])
#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))
#output
#0
You've seen how to access each individual element in an array and print it out on its own.
You've also seen how to print the array, using the print()
method. That method gives the following result:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
What if you want to print each value one by one?
This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.
For this you can use a simple for
loop:
import array as arr
numbers = arr.array('i',[10,20,30])
for number in numbers:
print(number)
#output
#10
#20
#30
You could also use the range()
function, and pass the len()
method as its parameter. This would give the same result as above:
import array as arr
values = arr.array('i',[10,20,30])
#prints each individual value in the array
for value in range(len(values)):
print(values[value])
#output
#10
#20
#30
To access a specific range of values inside the array, use the slicing operator, which is a colon :
.
When using the slicing operator and you only include one value, the counting starts from 0
by default. It gets the first item, and goes up to but not including the index number you specify.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 10 and 20 only
print(numbers[:2]) #first to second position
#output
#array('i', [10, 20])
When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 20 and 30 only
print(numbers[1:3]) #second to third position
#output
#rray('i', [20, 30])
Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.
Let's see some of the most commonly used methods which are used for performing operations on arrays.
You can change the value of a specific element by speficying its position and assigning it a new value:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40
print(numbers)
#output
#array('i', [40, 20, 30])
To add one single value at the end of an array, use the append()
method:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40)
print(numbers)
#output
#array('i', [10, 20, 30, 40])
Be aware that the new item you add needs to be the same data type as the rest of the items in the array.
Look what happens when I try to add a float to an array of integers:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40.0)
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
# numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer
But what if you want to add more than one value to the end an array?
Use the extend()
method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets
numbers.extend([40,50,60])
print(numbers)
#output
#array('i', [10, 20, 30, 40, 50, 60])
And what if you don't want to add an item to the end of an array? Use the insert()
method, to add an item at a specific position.
The insert()
function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 in the first position
#remember indexing starts at 0
numbers.insert(0,40)
print(numbers)
#output
#array('i', [40, 10, 20, 30])
To remove an element from an array, use the remove()
method and include the value as an argument to the method.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30])
With remove()
, only the first instance of the value you pass as an argument will be removed.
See what happens when there are more than one identical values:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
Only the first occurence of 10
is removed.
You can also use the pop()
method, and specify the position of the element to be removed:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
#remove the first instance of 10
numbers.pop(0)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
And there you have it - you now know the basics of how to create arrays in Python using the array module
. Hopefully you found this guide helpful.
You'll start from the basics and learn in an interacitve and beginner-friendly way. You'll also build five projects at the end to put into practice and help reinforce what you learned.
Thanks for reading and happy coding!
Original article source at https://www.freecodecamp.org
#python
1666082925
This tutorialvideo on 'Arrays in Python' will help you establish a strong hold on all the fundamentals in python programming language. Below are the topics covered in this video:
1:15 What is an array?
2:53 Is python list same as an array?
3:48 How to create arrays in python?
7:19 Accessing array elements
9:59 Basic array operations
- 10:33 Finding the length of an array
- 11:44 Adding Elements
- 15:06 Removing elements
- 18:32 Array concatenation
- 20:59 Slicing
- 23:26 Looping
Python Array Tutorial – Define, Index, Methods
In this article, you'll learn how to use Python arrays. You'll see how to define them and the different methods commonly used for performing operations on them.
The artcile covers arrays that you create by importing the array module
. We won't cover NumPy arrays here.
Let's get started!
Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.
Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.
Lists are one of the most common data structures in Python, and a core part of the language.
Lists and arrays behave similarly.
Just like arrays, lists are an ordered sequence of elements.
They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.
However, lists and arrays are not the same thing.
Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.
As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.
Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module
in order to be used.
Arrays of the array module
are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.
They are also more compact and take up less memory and space which makes them more size efficient compared to lists.
If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.
In order to create Python arrays, you'll first have to import the array module
which contains all the necassary functions.
There are three ways you can import the array module
:
import array
at the top of the file. This includes the module array
. You would then go on to create an array using array.array()
.import array
#how you would create an array
array.array()
array.array()
all the time, you could use import array as arr
at the top of the file, instead of import array
alone. You would then create an array by typing arr.array()
. The arr
acts as an alias name, with the array constructor then immediately following it.import array as arr
#how you would create an array
arr.array()
from array import *
, with *
importing all the functionalities available. You would then create an array by writing the array()
constructor alone.from array import *
#how you would create an array
array()
Once you've imported the array module
, you can then go on to define a Python array.
The general syntax for creating an array looks like this:
variable_name = array(typecode,[elements])
Let's break it down:
variable_name
would be the name of the array.typecode
specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.elements
that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode)
alone, without any elements.Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:
TYPECODE | C TYPE | PYTHON TYPE | SIZE |
---|---|---|---|
'b' | signed char | int | 1 |
'B' | unsigned char | int | 1 |
'u' | wchar_t | Unicode character | 2 |
'h' | signed short | int | 2 |
'H' | unsigned short | int | 2 |
'i' | signed int | int | 2 |
'I' | unsigned int | int | 2 |
'l' | signed long | int | 4 |
'L' | unsigned long | int | 4 |
'q' | signed long long | int | 8 |
'Q' | unsigned long long | int | 8 |
'f' | float | float | 4 |
'd' | double | float | 8 |
Tying everything together, here is an example of how you would define an array in Python:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
Let's break it down:
import array as arr
.numbers
array.arr.array()
because of import array as arr
.array()
constructor, we first included i
, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H
for example, would mean that no negative values are allowed.Keep in mind that if you tried to include values that were not of i
typecode, meaning they were not integer values, you would get an error:
import array as arr
numbers = arr.array('i',[10.0,20,30])
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
# numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer
In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.
Another way to create an array is the following:
from array import *
#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])
print(numbers)
#output
#array('d', [10.0, 20.0, 30.0])
The example above imported the array module
via from array import *
and created an array numbers
of float data type. This means that it holds only floating point numbers, which is specified with the 'd'
typecode.
To find out the exact number of elements contained in an array, use the built-in len()
method.
It will return the integer number that is equal to the total number of elements in the array you specify.
import array as arr
numbers = arr.array('i',[10,20,30])
print(len(numbers))
#output
# 3
In the example above, the array contained three elements – 10, 20, 30
– so the length of numbers
is 3
.
Each item in an array has a specific address. Individual items are accessed by referencing their index number.
Indexing in Python, and in all programming languages and computing in general, starts at 0
. It is important to remember that counting starts at 0
and not at 1
.
To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.
The general syntax would look something like this:
array_name[index_value_of_item]
Here is how you would access each individual element in an array:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element
#output
#10
#20
#30
Remember that the index value of the last element of an array is always one less than the length of the array. Where n
is the length of the array, n - 1
will be the index value of the last item.
Note that you can also access each individual element using negative indexing.
With negative indexing, the last element would have an index of -1
, the second to last element would have an index of -2
, and so on.
Here is how you would get each item in an array using that method:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
#output
#30
#20
#10
You can find out an element's index number by using the index()
method.
You pass the value of the element being searched as the argument to the method, and the element's index number is returned.
import array as arr
numbers = arr.array('i',[10,20,30])
#search for the index of the value 10
print(numbers.index(10))
#output
#0
If there is more than one element with the same value, the index of the first instance of the value will be returned:
import array as arr
numbers = arr.array('i',[10,20,30,10,20,30])
#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))
#output
#0
You've seen how to access each individual element in an array and print it out on its own.
You've also seen how to print the array, using the print()
method. That method gives the following result:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
What if you want to print each value one by one?
This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.
For this you can use a simple for
loop:
import array as arr
numbers = arr.array('i',[10,20,30])
for number in numbers:
print(number)
#output
#10
#20
#30
You could also use the range()
function, and pass the len()
method as its parameter. This would give the same result as above:
import array as arr
values = arr.array('i',[10,20,30])
#prints each individual value in the array
for value in range(len(values)):
print(values[value])
#output
#10
#20
#30
To access a specific range of values inside the array, use the slicing operator, which is a colon :
.
When using the slicing operator and you only include one value, the counting starts from 0
by default. It gets the first item, and goes up to but not including the index number you specify.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 10 and 20 only
print(numbers[:2]) #first to second position
#output
#array('i', [10, 20])
When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 20 and 30 only
print(numbers[1:3]) #second to third position
#output
#rray('i', [20, 30])
Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.
Let's see some of the most commonly used methods which are used for performing operations on arrays.
You can change the value of a specific element by speficying its position and assigning it a new value:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40
print(numbers)
#output
#array('i', [40, 20, 30])
To add one single value at the end of an array, use the append()
method:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40)
print(numbers)
#output
#array('i', [10, 20, 30, 40])
Be aware that the new item you add needs to be the same data type as the rest of the items in the array.
Look what happens when I try to add a float to an array of integers:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40.0)
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
# numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer
But what if you want to add more than one value to the end an array?
Use the extend()
method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets
numbers.extend([40,50,60])
print(numbers)
#output
#array('i', [10, 20, 30, 40, 50, 60])
And what if you don't want to add an item to the end of an array? Use the insert()
method, to add an item at a specific position.
The insert()
function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 in the first position
#remember indexing starts at 0
numbers.insert(0,40)
print(numbers)
#output
#array('i', [40, 10, 20, 30])
To remove an element from an array, use the remove()
method and include the value as an argument to the method.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30])
With remove()
, only the first instance of the value you pass as an argument will be removed.
See what happens when there are more than one identical values:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
Only the first occurence of 10
is removed.
You can also use the pop()
method, and specify the position of the element to be removed:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
#remove the first instance of 10
numbers.pop(0)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
And there you have it - you now know the basics of how to create arrays in Python using the array module
. Hopefully you found this guide helpful.
Thanks for reading and happy coding!
#python #programming