1585189593
Follow me
Kubernetes objects are represented in the Kubernetes API, and how you can express them in .yaml format.
Kubernetes Objects are persistent entities in the Kubernetes system. Kubernetes uses these entities to represent the state of your cluster. Specifically, they can describe:
• What containerized applications are running (and on which nodes)
• The resources available to those applications
• The policies around how those applications behave, such as restart policies, upgrades, and fault-tolerance
A Kubernetes object is a “record of intent”–once you create the object, the Kubernetes system will constantly work to ensure that object exists. By creating an object, you’re effectively telling the Kubernetes system what you want your cluster’s workload to look like; this is your cluster’s desired state.
To work with Kubernetes objects–whether to create, modify, or delete them–you’ll need to use the Kubernetes API. When you use the kubectl command-line interface, for example, the CLI makes the necessary Kubernetes API calls for you. You can also use the Kubernetes API directly in your own programs using one of the Client Libraries.
vi deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 2 #tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: nginx
spec:
containers:
In the .yaml file for the Kubernetes object you want to create, you’ll need to set values for the following fields:
• apiVersion - Which version of the Kubernetes API you’re using to create this object
• kind - What kind of object you want to create
• metadata - Data that helps uniquely identify the object, including a name string, UID, and optional namespace
• The selector field defines how the Deployment finds which Pods to manage. In this case, you simply select a label that is defined in the Pod template (app: nginx).
• matchLabels is a map of {key,value} pairs
The template field contains the following sub-fields:
• The Pods are labeled app: nginx using the labels field.
• The Pod template’s specification, or .template.spec field, indicates that the Pods run one container, nginx, which runs the nginx Docker Hub image at version 1.7.9.
• Create one container and name it nginx using the name field.
• Open port 80 so that the container can send and accept traffic
Create your deployment:
kubectl apply –f deployment.yaml
Check your deployment:
kubectl get deployment
Check your status:
kubectl rollout status deployment
Check assigned pod labels:
kubectl get pods –show-labels
Pod-template-hash label:
The name of the ReplicaSet is always formatted as [DEPLOYMENT-NAME]-[RANDOM-STRING].
The random string is randomly generated and uses the pod-template-hash as a seed.
The pod-template-hash label is added by the Deployment controller to every ReplicaSet that a Deployment creates or adopts.
This label ensures that child ReplicaSets of a Deployment do not overlap
Replica sets, Replication Controller, Deployment:
• Replica set is new set of replications. Earlier we had replication controller which does not support rolling update commands,
• Now, you want to use rolling update functionality pleat consider using deployment
• Rolling update commands is imperative (by running commands) whereas deployments are declarative (by writing manifests and using kubectl apply), so kubernetes recommend rolling out commands thought deployment.
Imperative Configuration example
kubectl run myapp --image myrepo:mytag --replicas 2
Declarative Configuration example:
Write manifest file then (above example deployment.yml)
kubectl apply -f deployment.yml
• replica set can be used independently.
vi replicasets.yml
apiVersion: apps/v1
kind: ReplicaSet
metadata:
name: frontend
labels:
app: guestbook
tier: frontend
spec:
#modify replicas according to your case
replicas: 3
selector:
matchLabels:
tier: frontend
template:
metadata:
labels:
tier: frontend
spec:
containers:
kubectl create -f replicasets.yml
kubectl get rs
kubectl describe rs frontend
• During a rolling update, a new ReplicaSets will be created and progressively scaled out to the desired number of replicas, while the old one is scaled in to zero
• In deployment you don’t need to be worried about replica sets that alert can be used in deployment
Isolating Pods from a ReplicaSet
You can remove Pods from a ReplicaSet by changing their labels
Syntax: kubectl label --overwrite pods
kubectl label --overwrite pods tier=frontlaa
How to assign new label to a pod:
kubectl label pods new-label=awesome
How to delete a pod with specific label
kubectl delete pods -l new-label=awesome
Horizontal Pod Autoscaling
With Horizontal Pod Autoscaling, Kubernetes automatically scales the number of pods in a replication controller, deployment or replica set based on observed CPU utilization
(we also can set some other metrics such memory)
The resource determines the behavior of the controller. The controller periodically adjusts the number of replicas in a replication controller or deployment to match the observed average CPU utilization to the target specified by user. (with a default value of 30 seconds)
vi horizontalscaling.yml
apiVersion: extensions/v1beta1
kind: HorizontalPodAutoscaler
metadata:
name: php-apache
namespace: default
spec:
scaleRef:
kind: ReplicationController
name: php-apache
namespace: default
subresource: scale
minReplicas: 1
maxReplicas: 10
cpuUtilization:
targetPercentage: 50
#kubernetes #dock #devops #microservices #aws
1650636000
Port of deeplearning4j to clojure
Contact info
If you have any questions,
NOT YET RELEASED TO CLOJARS
If using Maven add the following repository definition to your pom.xml:
<repository>
<id>clojars.org</id>
<url>http://clojars.org/repo</url>
</repository>
With Leiningen:
n/a
With Maven:
n/a
<dependency>
<groupId>_</groupId>
<artifactId>_</artifactId>
<version>_</version>
</dependency>
All functions for creating dl4j objects return code by default
API functions return code when all args are provided as code
API functions return the value of calling the wrapped method when args are provided as a mixture of objects and code or just objects
The tests are there to help clarify behavior, if you are unsure of how to use a fn, search the tests
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]))
;; as code (the default)
(l/dense-layer-builder
:activation-fn :relu
:learning-rate 0.006
:weight-init :xavier
:layer-name "example layer"
:n-in 10
:n-out 1)
;; =>
(doto
(org.deeplearning4j.nn.conf.layers.DenseLayer$Builder.)
(.nOut 1)
(.activation (dl4clj.constants/value-of {:activation-fn :relu}))
(.weightInit (dl4clj.constants/value-of {:weight-init :xavier}))
(.nIn 10)
(.name "example layer")
(.learningRate 0.006))
;; as an object
(l/dense-layer-builder
:activation-fn :relu
:learning-rate 0.006
:weight-init :xavier
:layer-name "example layer"
:n-in 10
:n-out 1
:as-code? false)
;; =>
#object[org.deeplearning4j.nn.conf.layers.DenseLayer 0x69d7d160 "DenseLayer(super=FeedForwardLayer(super=Layer(layerName=example layer, activationFn=relu, weightInit=XAVIER, biasInit=NaN, dist=null, learningRate=0.006, biasLearningRate=NaN, learningRateSchedule=null, momentum=NaN, momentumSchedule=null, l1=NaN, l2=NaN, l1Bias=NaN, l2Bias=NaN, dropOut=NaN, updater=null, rho=NaN, epsilon=NaN, rmsDecay=NaN, adamMeanDecay=NaN, adamVarDecay=NaN, gradientNormalization=null, gradientNormalizationThreshold=NaN), nIn=10, nOut=1))"]
Loading data from a file (here its a csv)
(ns my.ns
(:require [dl4clj.datasets.input-splits :as s]
[dl4clj.datasets.record-readers :as rr]
[dl4clj.datasets.api.record-readers :refer :all]
[dl4clj.datasets.iterators :as ds-iter]
[dl4clj.datasets.api.iterators :refer :all]
[dl4clj.helpers :refer [data-from-iter]]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; file splits (convert the data to records)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def poker-path "resources/poker-hand-training.csv")
;; this is not a complete dataset, it is just here to sever as an example
(def file-split (s/new-filesplit :path poker-path))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers, (read the records created by the file split)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def csv-rr (initialize-rr! :rr (rr/new-csv-record-reader :skip-n-lines 0 :delimiter ",")
:input-split file-split))
;; lets look at some data
(println (next-record! :rr csv-rr :as-code? false))
;; => #object[java.util.ArrayList 0x2473e02d [1, 10, 1, 11, 1, 13, 1, 12, 1, 1, 9]]
;; this is our first line from the csv
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers dataset iterators (turn our writables into a dataset)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
:record-reader csv-rr
:batch-size 1
:label-idx 10
:n-possible-labels 10))
;; we use our record reader created above
;; we want to see one example per dataset obj returned (:batch-size = 1)
;; we know our label is at the last index, so :label-idx = 10
;; there are 10 possible types of poker hands so :n-possible-labels = 10
;; you can also set :label-idx to -1 to use the last index no matter the size of the seq
(def other-rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
:record-reader csv-rr
:batch-size 1
:label-idx -1
:n-possible-labels 10))
(str (next-example! :iter rr-ds-iter :as-code? false))
;; =>
;;===========INPUT===================
;;[1.00, 10.00, 1.00, 11.00, 1.00, 13.00, 1.00, 12.00, 1.00, 1.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]
;; and to show that :label-idx = -1 gives us the same output
(= (next-example! :iter rr-ds-iter :as-code? false)
(next-example! :iter other-rr-ds-iter :as-code? false)) ;; => true
(ns my.ns
(:require [nd4clj.linalg.factory.nd4j :refer [vec->indarray matrix->indarray
indarray-of-zeros indarray-of-ones
indarray-of-rand vec-or-matrix->indarray]]
[dl4clj.datasets.new-datasets :refer [new-ds]]
[dl4clj.datasets.api.datasets :refer [as-list]]
[dl4clj.datasets.iterators :refer [new-existing-dataset-iterator]]
[dl4clj.datasets.api.iterators :refer :all]
[dl4clj.datasets.pre-processors :as ds-pp]
[dl4clj.datasets.api.pre-processors :refer :all]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; INDArray creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;TODO: consider defaulting to code
;; can create from a vector
(vec->indarray [1 2 3 4])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x269df212 [1.00, 2.00, 3.00, 4.00]]
;; or from a matrix
(matrix->indarray [[1 2 3 4] [2 4 6 8]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x20aa7fe1
;; [[1.00, 2.00, 3.00, 4.00], [2.00, 4.00, 6.00, 8.00]]]
;; will fill in spareness with zeros
(matrix->indarray [[1 2 3 4] [2 4 6 8] [10 12]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x8b7796c
;;[[1.00, 2.00, 3.00, 4.00],
;; [2.00, 4.00, 6.00, 8.00],
;; [10.00, 12.00, 0.00, 0.00]]]
;; can create an indarray of all zeros with specified shape
;; defaults to :rows = 1 :columns = 1
(indarray-of-zeros :rows 3 :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x6f586a7e
;;[[0.00, 0.00],
;; [0.00, 0.00],
;; [0.00, 0.00]]]
(indarray-of-zeros) ;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xe59ffec 0.00]
;; and if only one is supplied, will get a vector of specified length
(indarray-of-zeros :rows 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2899d974 [0.00, 0.00]]
(indarray-of-zeros :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xa5b9782 [0.00, 0.00]]
;; same considerations/defaults for indarray-of-ones and indarray-of-rand
(indarray-of-ones :rows 2 :columns 3)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x54f08662 [[1.00, 1.00, 1.00], [1.00, 1.00, 1.00]]]
(indarray-of-rand :rows 2 :columns 3)
;; all values are greater than 0 but less than 1
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2f20293b [[0.85, 0.86, 0.13], [0.94, 0.04, 0.36]]]
;; vec-or-matrix->indarray is built into all functions which require INDArrays
;; so that you can use clojure data structures
;; but you still have the option of passing existing INDArrays
(def example-array (vec-or-matrix->indarray [1 2 3 4]))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x5c44c71f [1.00, 2.00, 3.00, 4.00]]
(vec-or-matrix->indarray example-array)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x607b03b0 [1.00, 2.00, 3.00, 4.00]]
(vec-or-matrix->indarray (indarray-of-rand :rows 2))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x49143b08 [0.76, 0.92]]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def ds-with-single-example (new-ds :input [1 2 3 4]
:output [0.0 1.0 0.0]))
(as-list :ds ds-with-single-example :as-code? false)
;; =>
;; #object[java.util.ArrayList 0x5d703d12
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00]]]
(def ds-with-multiple-examples (new-ds
:input [[1 2 3 4] [2 4 6 8]]
:output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))
(as-list :ds ds-with-multiple-examples :as-code? false)
;; =>
;;#object[java.util.ArrayList 0x29c7a9e2
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00],
;;===========INPUT===================
;;[2.00, 4.00, 6.00, 8.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 1.00]]]
;; we can create a dataset iterator from the code which creates datasets
;; and set the labels for our outputs (optional)
(def ds-with-multiple-examples
(new-ds
:input [[1 2 3 4] [2 4 6 8]]
:output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))
;; iterator
(def training-rr-ds-iter
(new-existing-dataset-iterator
:dataset ds-with-multiple-examples
:labels ["foo" "baz" "foobaz"]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set normalization
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; this gathers statistics on the dataset and normalizes the data
;; and applies the transformation to all dataset objects in the iterator
(def train-iter-normalized
(c/normalize-iter! :iter training-rr-ds-iter
:normalizer (ds-pp/new-standardize-normalization-ds-preprocessor)
:as-code? false))
;; above returns the normalized iterator
;; to get fit normalizer
(def the-normalizer
(get-pre-processor train-iter-normalized))
Creating a neural network configuration with singe and multiple layers
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.conf.distributions :as dist]
[dl4clj.nn.conf.input-pre-processor :as pp]
[dl4clj.nn.conf.step-fns :as s-fn]))
;; nn/builder has 3 types of args
;; 1) args which set network configuration params
;; 2) args which set default values for layers
;; 3) args which set multi layer network configuration params
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; single layer nn configuration
;; here we are setting network configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(nn/builder :optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:step-fn :default-step-fn
:layers {:dense-layer {:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "single layer model example"
:n-in 10
:n-out 20}})
;; there are several options within a nn-conf map which can be configuration maps
;; or calls to fns
;; It doesn't matter which option you choose and you don't have to stay consistent
;; the list of params which can be passed as config maps or fn calls will
;; be enumerated at a later date
(nn/builder :optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:step-fn (s-fn/new-default-step-fn)
:build? true
;; dont need to specify layer order, theres only one
:layers (l/dense-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:dist (dist/new-normal-distribution :mean 0 :std 1)
:learning-rate 0.006
:weight-init :xavier
:layer-name "single layer model example"
:n-in 10
:n-out 20))
;; these configurations are the same
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; multi-layer configuration
;; here we are also setting layer defaults
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; defaults will apply to layers which do not specify those value in their config
(nn/builder
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:default-activation-fn :sigmoid
:default-weight-init :uniform
;; we need to specify the layer order
:layers {0 (l/activation-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "example first layer"
:n-in 10
:n-out 20)
1 {:output-layer {:n-in 20
:n-out 2
:loss-fn :mse
:layer-name "example output layer"}}})
;; specifying multi-layer config params
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
;; layer defaults
:default-activation-fn :sigmoid
:default-weight-init :uniform
;; the layers
:layers {0 (l/activation-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "example first layer"
:n-in 10
:n-out 20)
1 {:output-layer {:n-in 20
:n-out 2
:loss-fn :mse
:layer-name "example output layer"}}}
;; multi layer network args
:backprop? true
:backprop-type :standard
:pretrain? false
:input-pre-processors {0 (pp/new-zero-mean-pre-pre-processor)
1 {:unit-variance-processor {}}})
Multi Layer models
(ns my.ns
(:require [dl4clj.datasets.iterators :as iter]
[dl4clj.datasets.input-splits :as split]
[dl4clj.datasets.record-readers :as rr]
[dl4clj.optimize.listeners :as listener]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.multilayer.multi-layer-network :as mln]
[dl4clj.nn.api.model :refer [init! set-listeners!]]
[dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
[dl4clj.datasets.api.record-readers :refer [initialize-rr!]]
[dl4clj.eval.api.eval :refer [get-stats get-accuracy]]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; nn-conf -> multi-layer-network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123 :iterations 1 :regularization? true
;; setting layer defaults
:default-activation-fn :relu :default-l2 7.5e-6
:default-weight-init :xavier :default-learning-rate 0.0015
:default-updater :nesterovs :default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def multi-layer-network (c/model-from-conf nn-conf))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; local cpu training with dl4j pre-built iterators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; lets use the pre-built Mnist data set iterator
(def train-mnist-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-mnist-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
;; and lets set a listener so we can know how training is going
(def score-listener (listener/new-score-iteration-listener :print-every-n 5))
;; and attach it to our model
;; TODO: listeners are broken, look into log4j warnning
(def mln-with-listener (set-listeners! :model multi-layer-network
:listeners [score-listener]))
(def trained-mln (mln/train-mln-with-ds-iter! :mln mln-with-listener
:iter train-mnist-iter
:n-epochs 15
:as-code? false))
;; training happens because :as-code? = false
;; if it was true, we would still just have a data structure
;; we now have a trained model that has seen the training dataset 15 times
;; time to evaluate our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Create an evaluation object
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def eval-obj (evaluate-classification :mln trained-mln
:iter test-mnist-iter))
;; always remember that these objects are stateful, dont use the same eval-obj
;; to eval two different networks
;; we trained the model on a training dataset. We evaluate on a test set
(println (get-stats :evaler eval-obj))
;; this will print the stats to standard out for each feature/label pair
;;Examples labeled as 0 classified by model as 0: 968 times
;;Examples labeled as 0 classified by model as 1: 1 times
;;Examples labeled as 0 classified by model as 2: 1 times
;;Examples labeled as 0 classified by model as 3: 1 times
;;Examples labeled as 0 classified by model as 5: 1 times
;;Examples labeled as 0 classified by model as 6: 3 times
;;Examples labeled as 0 classified by model as 7: 1 times
;;Examples labeled as 0 classified by model as 8: 2 times
;;Examples labeled as 0 classified by model as 9: 2 times
;;Examples labeled as 1 classified by model as 1: 1126 times
;;Examples labeled as 1 classified by model as 2: 2 times
;;Examples labeled as 1 classified by model as 3: 1 times
;;Examples labeled as 1 classified by model as 5: 1 times
;;Examples labeled as 1 classified by model as 6: 2 times
;;Examples labeled as 1 classified by model as 7: 1 times
;;Examples labeled as 1 classified by model as 8: 2 times
;;Examples labeled as 2 classified by model as 0: 3 times
;;Examples labeled as 2 classified by model as 1: 2 times
;;Examples labeled as 2 classified by model as 2: 1006 times
;;Examples labeled as 2 classified by model as 3: 2 times
;;Examples labeled as 2 classified by model as 4: 3 times
;;Examples labeled as 2 classified by model as 6: 3 times
;;Examples labeled as 2 classified by model as 7: 7 times
;;Examples labeled as 2 classified by model as 8: 6 times
;;Examples labeled as 3 classified by model as 2: 4 times
;;Examples labeled as 3 classified by model as 3: 990 times
;;Examples labeled as 3 classified by model as 5: 3 times
;;Examples labeled as 3 classified by model as 7: 3 times
;;Examples labeled as 3 classified by model as 8: 3 times
;;Examples labeled as 3 classified by model as 9: 7 times
;;Examples labeled as 4 classified by model as 2: 2 times
;;Examples labeled as 4 classified by model as 3: 1 times
;;Examples labeled as 4 classified by model as 4: 967 times
;;Examples labeled as 4 classified by model as 6: 4 times
;;Examples labeled as 4 classified by model as 7: 1 times
;;Examples labeled as 4 classified by model as 9: 7 times
;;Examples labeled as 5 classified by model as 0: 2 times
;;Examples labeled as 5 classified by model as 3: 6 times
;;Examples labeled as 5 classified by model as 4: 1 times
;;Examples labeled as 5 classified by model as 5: 874 times
;;Examples labeled as 5 classified by model as 6: 3 times
;;Examples labeled as 5 classified by model as 7: 1 times
;;Examples labeled as 5 classified by model as 8: 3 times
;;Examples labeled as 5 classified by model as 9: 2 times
;;Examples labeled as 6 classified by model as 0: 4 times
;;Examples labeled as 6 classified by model as 1: 3 times
;;Examples labeled as 6 classified by model as 3: 2 times
;;Examples labeled as 6 classified by model as 4: 4 times
;;Examples labeled as 6 classified by model as 5: 4 times
;;Examples labeled as 6 classified by model as 6: 939 times
;;Examples labeled as 6 classified by model as 7: 1 times
;;Examples labeled as 6 classified by model as 8: 1 times
;;Examples labeled as 7 classified by model as 1: 7 times
;;Examples labeled as 7 classified by model as 2: 4 times
;;Examples labeled as 7 classified by model as 3: 3 times
;;Examples labeled as 7 classified by model as 7: 1005 times
;;Examples labeled as 7 classified by model as 8: 2 times
;;Examples labeled as 7 classified by model as 9: 7 times
;;Examples labeled as 8 classified by model as 0: 3 times
;;Examples labeled as 8 classified by model as 2: 3 times
;;Examples labeled as 8 classified by model as 3: 2 times
;;Examples labeled as 8 classified by model as 4: 4 times
;;Examples labeled as 8 classified by model as 5: 3 times
;;Examples labeled as 8 classified by model as 6: 2 times
;;Examples labeled as 8 classified by model as 7: 4 times
;;Examples labeled as 8 classified by model as 8: 947 times
;;Examples labeled as 8 classified by model as 9: 6 times
;;Examples labeled as 9 classified by model as 0: 2 times
;;Examples labeled as 9 classified by model as 1: 2 times
;;Examples labeled as 9 classified by model as 3: 4 times
;;Examples labeled as 9 classified by model as 4: 8 times
;;Examples labeled as 9 classified by model as 6: 1 times
;;Examples labeled as 9 classified by model as 7: 4 times
;;Examples labeled as 9 classified by model as 8: 2 times
;;Examples labeled as 9 classified by model as 9: 986 times
;;==========================Scores========================================
;; Accuracy: 0.9808
;; Precision: 0.9808
;; Recall: 0.9807
;; F1 Score: 0.9807
;;========================================================================
;; can get the stats that are printed via fns in the evaluation namespace
;; after running eval-model-whole-ds
(get-accuracy :evaler evaler-with-stats) ;; => 0.9808
Early Stopping (controlling training)
it is recommened you start here when designing models
using dl4clj.core
(ns my.ns
(:require [dl4clj.earlystopping.termination-conditions :refer :all]
[dl4clj.earlystopping.model-saver :refer [new-in-memory-saver]]
[dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :as iter]
[dl4clj.core :as c]))
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:regularization? true
;; setting layer defaults
:default-activation-fn :relu
:default-l2 7.5e-6
:default-weight-init :xavier
:default-learning-rate 0.0015
:default-updater :nesterovs
:default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def train-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
(def invalid-score-condition (new-invalid-score-iteration-termination-condition))
(def max-score-condition (new-max-score-iteration-termination-condition
:max-score 20.0))
(def max-time-condition (new-max-time-iteration-termination-condition
:max-time-val 10
:max-time-unit :minutes))
(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
:max-n-epoch-no-improve 5))
(def target-score-condition (new-best-score-epoch-termination-condition
:best-expected-score 0.009))
(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))
(def in-mem-saver (new-in-memory-saver))
(def trained-mln
;; defaults to returning the model
(c/train-with-early-stopping
:nn-conf nn-conf
:training-iter train-mnist-iter
:testing-iter test-mnist-iter
:eval-every-n-epochs 1
:iteration-termination-conditions [invalid-score-condition
max-score-condition
max-time-condition]
:epoch-termination-conditions [score-doesnt-improve-condition
target-score-condition
max-number-epochs-condition]
:save-last-model? true
:model-saver in-mem-saver
:as-code? false))
(def model-evaler
(evaluate-classification :mln trained-mln :iter test-mnist-iter))
(println (get-stats :evaler model-evaler))
(ns my.ns
(:require [dl4clj.earlystopping.early-stopping-config :refer [new-early-stopping-config]]
[dl4clj.earlystopping.termination-conditions :refer :all]
[dl4clj.earlystopping.model-saver :refer [new-in-memory-saver new-local-file-model-saver]]
[dl4clj.earlystopping.score-calc :refer [new-ds-loss-calculator]]
[dl4clj.earlystopping.early-stopping-trainer :refer [new-early-stopping-trainer]]
[dl4clj.earlystopping.api.early-stopping-trainer :refer [fit-trainer!]]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.multilayer.multi-layer-network :as mln]
[dl4clj.utils :refer [load-model!]]
[dl4clj.datasets.iterators :as iter]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; start with our network config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123 :iterations 1 :regularization? true
;; setting layer defaults
:default-activation-fn :relu :default-l2 7.5e-6
:default-weight-init :xavier :default-learning-rate 0.0015
:default-updater :nesterovs :default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def mln (c/model-from-conf nn-conf))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; the training/testing data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def train-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we are going to need termination conditions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; these allow us to control when we exit training
;; this can be based off of iterations or epochs
;; iteration termination conditions
(def invalid-score-condition (new-invalid-score-iteration-termination-condition))
(def max-score-condition (new-max-score-iteration-termination-condition
:max-score 20.0))
(def max-time-condition (new-max-time-iteration-termination-condition
:max-time-val 10
:max-time-unit :minutes))
;; epoch termination conditions
(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
:max-n-epoch-no-improve 5))
(def target-score-condition (new-best-score-epoch-termination-condition :best-expected-score 0.009))
(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we also need a way to save our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; can be in memory or to a local directory
(def in-mem-saver (new-in-memory-saver))
(def local-file-saver (new-local-file-model-saver :directory "resources/tmp/readme/"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; set up your score calculator
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def score-calcer (new-ds-loss-calculator :iter test-iter
:average? true))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; termination conditions
;; a way to save our model
;; a way to calculate the score of our model on the dataset
(def early-stopping-conf
(new-early-stopping-config
:epoch-termination-conditions [score-doesnt-improve-condition
target-score-condition
max-number-epochs-condition]
:iteration-termination-conditions [invalid-score-condition
max-score-condition
max-time-condition]
:eval-every-n-epochs 5
:model-saver local-file-saver
:save-last-model? true
:score-calculator score-calcer))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping trainer from our data, model and early stopping conf
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def es-trainer (new-early-stopping-trainer :early-stopping-conf early-stopping-conf
:mln mln
:iter train-iter))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fit and use our early stopping trainer
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def es-trainer-fitted (fit-trainer! es-trainer :as-code? false))
;; when the trainer terminates, you will see something like this
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Completed training epoch 14
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO New best model: score = 0.005225599372851298,
;; epoch = 14 (previous: score = 0.018243224899038346, epoch = 7)
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Hit epoch termination condition at epoch 14.
;; Details: BestScoreEpochTerminationCondition(0.009)
;; and if we look at the es-trainer-fitted object we see
;;#object[org.deeplearning4j.earlystopping.EarlyStoppingResult 0x5ab74f27 EarlyStoppingResult
;;(terminationReason=EpochTerminationCondition,details=BestScoreEpochTerminationCondition(0.009),
;; bestModelEpoch=14,bestModelScore=0.005225599372851298,totalEpochs=15)]
;; and our model has been saved to /resources/tmp/readme/bestModel.bin
;; there we have our model config, model params and our updater state
;; we can then load this model to use it or continue refining it
(def loaded-model (load-model! :path "resources/tmp/readme/bestModel.bin"
:load-updater? true))
Transfer Learning (freezing layers)
;; TODO: need to write up examples
dl4j Spark usage
How it is done in dl4clj
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.spark.masters.param-avg :as master]
[dl4clj.spark.data.java-rdd :refer [new-java-spark-context
java-rdd-from-iter]]
[dl4clj.spark.api.dl4j-multi-layer :refer [eval-classification-spark-mln
get-spark-context]]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def mln-conf
(nn/builder
:optimization-algo :stochastic-gradient-descent
:default-learning-rate 0.006
:layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
1 {:output-layer
{:loss-fn :negativeloglikelihood
:n-in 2 :n-out 3
:activation-fn :soft-max
:weight-init :xavier}}}
:backprop? true
:backprop-type :standard))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def training-master
(master/new-parameter-averaging-training-master
:build? true
:rdd-n-examples 10
:n-workers 4
:averaging-freq 10
:batch-size-per-worker 2
:export-dir "resources/spark/master/"
:rdd-training-approach :direct
:repartition-data :always
:repartition-strategy :balanced
:seed 1234
:save-updater? true
:storage-level :none))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, spark context
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def your-spark-context
(new-java-spark-context :app-name "example app"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, training data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def iris-iter
(new-iris-data-set-iterator
:batch-size 1
:n-examples 5))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, spark mln
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def fitted-spark-mln
(c/train-with-spark :spark-context your-spark-context
:mln-conf mln-conf
:training-master training-master
:iter iris-iter
:n-epochs 1
:as-code? false))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, use spark context from spark-mln to create rdd
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: eliminate this step
(def our-rdd
(let [sc (get-spark-context fitted-spark-mln :as-code? false)]
(java-rdd-from-iter :spark-context sc
:iter iris-iter)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 6, evaluation model and print stats (poor performance of model expected)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def eval-obj
(eval-classification-spark-mln
:spark-mln fitted-spark-mln
:rdd our-rdd))
(println (get-stats :evaler eval-obj))
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.spark.masters.param-avg :as master]
[dl4clj.spark.data.java-rdd :refer [new-java-spark-context java-rdd-from-iter]]
[dl4clj.spark.dl4j-multi-layer :as spark-mln]
[dl4clj.spark.api.dl4j-multi-layer :refer [fit-spark-mln!
eval-classification-spark-mln]]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def mln-conf
(nn/builder
:optimization-algo :stochastic-gradient-descent
:default-learning-rate 0.006
:layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
1 {:output-layer
{:loss-fn :negativeloglikelihood
:n-in 2 :n-out 3
:activation-fn :soft-max
:weight-init :xavier}}}
:backprop? true
:as-code? false
:backprop-type :standard))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, create a training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; not all options specified, but most are
(def training-master
(master/new-parameter-averaging-training-master
:build? true
:rdd-n-examples 10
:n-workers 4
:averaging-freq 10
:batch-size-per-worker 2
:export-dir "resources/spark/master/"
:rdd-training-approach :direct
:repartition-data :always
:repartition-strategy :balanced
:seed 1234
:as-code? false
:save-updater? true
:storage-level :none))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, create a Spark Multi Layer Network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def your-spark-context
(new-java-spark-context :app-name "example app" :as-code? false))
;; new-java-spark-context will turn an existing spark-configuration into a java spark context
;; or create a new java spark context with master set to "local[*]" and the app name
;; set to :app-name
(def spark-mln
(spark-mln/new-spark-multi-layer-network
:spark-context your-spark-context
:mln mln-conf
:training-master training-master
:as-code? false))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, load your data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; one way is via a dataset-iterator
;; can make one directly from a dataset (iterator data-set)
;; see: nd4clj.linalg.dataset.api.data-set and nd4clj.linalg.dataset.data-set
;; we are going to use a pre-built one
(def iris-iter
(new-iris-data-set-iterator
:batch-size 1
:n-examples 5
:as-code? false))
;; now lets convert the data into a javaRDD
(def our-rdd
(java-rdd-from-iter :spark-context your-spark-context
:iter iris-iter))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, fit and evaluate the model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def fitted-spark-mln
(fit-spark-mln!
:spark-mln spark-mln
:rdd our-rdd
:n-epochs 1))
;; this fn also has the option to supply :path-to-data instead of :rdd
;; that path should point to a directory containing a number of dataset objects
(def eval-obj
(eval-classification-spark-mln
:spark-mln fitted-spark-mln
:rdd our-rdd))
;; we would want to have different testing and training rdd's but here we are using
;; the data we trained on
;; lets get the stats for how our model performed
(println (get-stats :evaler eval-obj))
Coming soon
Implement ComputationGraphs and the classes which use them
NLP
Parallelism
TSNE
UI
Author: yetanalytics
Source Code: https://github.com/yetanalytics/dl4clj
License: BSD-2-Clause License
1602964260
Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.
According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.
(State of Kubernetes and Container Security, 2020)
And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.
(State of Kubernetes and Container Security, 2020)
#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml
1591611780
How can I find the correct ulimit values for a user account or process on Linux systems?
For proper operation, we must ensure that the correct ulimit values set after installing various software. The Linux system provides means of restricting the number of resources that can be used. Limits set for each Linux user account. However, system limits are applied separately to each process that is running for that user too. For example, if certain thresholds are too low, the system might not be able to server web pages using Nginx/Apache or PHP/Python app. System resource limits viewed or set with the NA command. Let us see how to use the ulimit that provides control over the resources available to the shell and processes.
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]
1591993440
We are going to build a full stack Todo App using the MEAN (MongoDB, ExpressJS, AngularJS and NodeJS). This is the last part of three-post series tutorial.
MEAN Stack tutorial series:
AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II)
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III) 👈 you are here
Before completing the app, let’s cover some background about the this stack. If you rather jump to the hands-on part click here to get started.
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]
1595434320
Mit dem integrierten Debugger von Visual Studio Code lassen sich ASP.NET Core bzw. .NET Core Applikationen einfach und problemlos debuggen. Der Debugger unterstützt auch Remote Debugging, somit lassen sich zum Beispiel .NET Core Programme, die in einem Docker-Container laufen, debuggen.
Als Beispiel Applikation reicht das Default-Template für MVC Applikationen dotnet new mvc
$ md docker-core-debugger
$ cd docker-core-debugger
$ dotnet new mvc
Mit dotnet run prüfen wir kurz, ob die Applikation läuft und unter der Adresse http://localhost:5000 erreichbar ist.
$ dotnet run
$ Hosting environment: Production
$ Content root path: D:\Temp\docker-aspnetcore
$ Now listening on: http://localhost:5000
Die .NET Core Applikation builden wir mit dotnet build und publishen alles mit Hilfe von dotnet publish
$ dotnet build
$ dotnet publish -c Debug -o out --runtime linux-x64
Dabei gilt es zu beachten, dass die Build Configuration mit -c Debug gesetzt ist und das Output Directory auf -o out. Sonst findet Docker die nötigen Binaries nicht. Für den Docker Container brauchen wir nun ein Dockerfile, dass beim Start vorgängig den .NET Core command line debugger (VSDBG) installiert. Das Installations-Script für VSDBG ist unter https://aka.ms/getvsdbgsh abfrufbar.
FROM microsoft/aspnetcore:latest
WORKDIR /app
RUN apt-get update \
&& apt-get install -y --no-install-recommends \
unzip procps \
&& rm -rf /var/lib/apt/lists/* \
&& curl -sSL https://aka.ms/getvsdbgsh | bash /dev/stdin -v latest -l /vsdbg
COPY ./out .
ENTRYPOINT ["dotnet", "docker-core-debugger.dll"]
Den Docker Container erstellen wir mit dem docker build Kommando
$ docker build -t coreapp .
und starten die Applikation mit docker run.
$ docker run -d -p 8080:80 --name coreapp coreapp
Jetzt muss Visual Studio Code nur noch wissen, wo unsere Applikation läuft. Dazu definieren wir eine launch.json vom Typ attach und konfigurieren die nötigen Parameter für den Debugger.
{
"version": "0.2.0",
"configurations": [
{
"name": ".NET Core Remote Attach",
"type": "coreclr",
"request": "attach",
"processId": "${command:pickRemoteProcess}",
"pipeTransport": {
"pipeProgram": "docker",
"pipeArgs": ["exec", "-i coreapp ${debuggerCommand}"],
"quoteArgs": false,
"debuggerPath": "/vsdbg/vsdbg",
"pipeCwd": "${workspaceRoot}"
},
"logging": {
"engineLogging": true,
"exceptions": true,
"moduleLoad": true,
"programOutput": true
},
}
]
}
Mit F5 starten wir den Debugger. Wenn alles klappt, sollte eine Auswahl der Prozesse des Docker-Containers sichtbar sein.
Nun muss der dotnet Prozess ausgewählt werden. Der Visual Studio Code Debugger verbindet sich darauf mit VSDBG und wir können wie gewohnt unseren Code debuggen. Dazu setzen wir einen Breakpoint in der Index-Action des HomeControllers und rufen mit dem Browser die URL http://localhost:8080/ auf.
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]