React Native Charts with Cube.js and Victory

React Native Charts with Cube.js and Victory

Giving mobile users access to analytical data is always a hard problem to solve. Browsing a heavy website on a small screen usually is not the best user experience. Building native mobile apps is a great solution, but usually requires a lot of effort.

Giving mobile users access to analytical data is always a hard problem to solve. Browsing a heavy website on a small screen usually is not the best user experience. Building native mobile apps is a great solution, but usually requires a lot of effort.

React-Native makes building and maintaining native applications much easier. By coupling it with Cube.js and Victory-Native, I'll show you how to build an analytics dashboard embedded into a native mobile app. The resulting app can run both on iOS and Android; you can try it out by using the Expo app on your own device.

Below is a screenshot of the final app. Here's the app snack on Expo—you can run it online or launch it on your device. Also, there you can find all the source code from this tutorial.

The data

We are going to use the Cube.js backend with sample data from Nginx logs. I’ve covered how to collect Nginx logs and analyze them with AWS Athena and Cube.js in this tutorial. Let’s recap the data schema we’re going to query:

cube(`Logs`, {
  measures: {
    count: {
      type: `count`,
    },

errorCount: {
  type: `count`,
  filters: [
    { sql: `${CUBE.isError} = 'Yes'` }
  ]
},

errorRate: {
  type: `number`,
  sql: `100.0 * ${errorCount} / ${count}`,
  format: `percent`
}

},

dimensions: { status: { sql: status, type: number },

isError: {
  type: `string`,
  case: {
    when: [{
      sql: `${CUBE}.status >= 400`, label: `Yes`
    }],
    else: { label: `No` }
  }
},

createdAt: {
  sql: `from_unixtime(created_at)`,
  type: `time`
}

} });

Cube.js uses data schemas like the one above to generate SQL and execute it against your database. If you are new to Cube.js, I recommend checking this Cube.js 101 tutorial.

React-Native

To build a react-native app, we'll be using the react-native-cli package. Go ahead and install it:

npm install -g react-native-cli

or

yarn global add react-native-cli

Now you can create a new app:

react-native init cubejs-rn-demo
cd cubejs-rn-demo

This will create a barebones react-native app.

Cube.js

Cube.js provides a client package for loading data from the backend:

npm install -s @cubejs-client/core

or

yarn add @cubejs-client/core

It works for both web and native apps. Also, Cube.js has a React component, which is easier to work with:

npm install -s @cubejs-client/react

or

yarn add @cubejs-client/react

The Cube.js React client also works great with React-Native. The client itself doesn't provide any visualisations and is designed to work with existing chart libraries. It provides a set of methods to access Cube.js API and to work with query result.

Victory

For charts, we will be using the victory-native library.

npm install -s victory-native

or

yarn add victory-native

Now we can create a simple pie chart just like on the demo dashboard. Here's the code:

<VictoryChart width={this.state.width}>
  <VictoryPie
    data={data.chartPivot()}
    y="Logs.count"
    labels={item => numberFormatter(item[data.seriesNames()[0].key])}
  />
</VictoryChart>

Building a Dashboard

We are going to build a simple dashboard with just a couple of tiles, so we'll use a ScrollView. If you're going to have many tiles on a dashboard, it would be better to switch to a FlatList because of potential performance issues. So, let's create a simple dashboard. First, we are going to create a Chart component, where we'll define all required data.

const Empty = () => <Text>No component for that yet</Text>;

const chartElement = (type, data) => { switch (type) { case 'line': return <LineChart data={data} />; case 'pie': return <PieChart data={data} />; case 'bar': return <BarChart data={data} />; default: return <Empty />; } };

const Chart = ({ type }) => ( <QueryRenderer query={queries[type]} cubejsApi={cubejsApi} render={({ resultSet }) => { if (!resultSet) { return <ActivityIndicator size="large" color="#0000ff" />; }

  return chartElement(type, resultSet);
}}

/> );

Also, we will be using Victory's zoomContainer to allow users to zoom into the data. We'll also save current device orientation to add more data in landscape mode and change paddings:

const padding = {
    portrait: { left: 55, top: 40, right: 45, bottom: 50 },
    landscape: { left: 100, top: 40, right: 70, bottom: 50 }
};

const tickCount = { portrait: 4, landscape: 9 };

export const colors = [ "#7DB3FF", "#49457B", "#FF7C78", "#FED3D0", "#6F76D9", "#9ADFB4", "#2E7987" ];

class ChartWrapper extends React.Component { constructor() { super(); this.state = { orientation: 'portrait', ...Dimensions.get('window')}; this.updateDimensions = this.updateDimensions.bind(this); }

componentDidMount() { this.updateDimensions(); }

handleZoom(domain) { this.setState({ selectedDomain: domain }); }

updateDimensions() { const windowSize = Dimensions.get('window'); const orientation = windowSize.width < windowSize.height ? 'portrait' : 'landscape'; this.setState({ orientation, ...windowSize }); }

render() { return ( <View style={vStyles.container} onLayout={this.updateDimensions}> <VictoryChart width={this.state.width} padding={padding[this.state.orientation]} domainPadding={{x: 10, y: 25}} colorScale={colors} tickCount={4} containerComponent={ <VictoryZoomContainer responsive={true} zoomDimension="x" zoomDomain={this.state.zoomDomain} onZoomDomainChange={this.handleZoom.bind(this)} /> } > {this.props.children} {!this.props.hideAxis && <VictoryAxis tickCount={tickCount[this.state.orientation]} /> } {!this.props.hideAxis && <VictoryAxis dependentAxis /> } </VictoryChart> </View> ); } }

Please note that the default app.json config has locked portrait screen orientation. To allow device rotation, set "orientation" to "default"—that will allow all orientations except upside down. This code scales the charts when the device is rotated:

Let's start with a line chart. First, we'll need to define a basic Cube.js query in Chart.js to get the data:

{
  measures: ["Logs.errorRate"],
  timeDimensions: [
    {
      dimension: "Logs.createdAt",
      dateRange: ["2019-04-01", "2019-04-09"],
      granularity: "day"
    }
  ]
}

Now we can create a LineChart component. It's a basic Victory chart with a bit of styling:

const LineChart = ({ data }) => (
  <ChartWrapper>
    <VictoryLine
      data={data.chartPivot()}
      x={dateFormatter}
      labels={null}
      y={data.seriesNames()[0].key}
      style={{
        data: { stroke: "#6a6ee5" },
        parent: { border: "1px solid #ccc"}
      }}
    />
  </ChartWrapper>
);

We can include this component in the Chart.js file and render in the Dashboard.js screen:

const Dashboard = () => {
  return (
    <ScrollView>
      <View style={styles.item}>
        <Text style={styles.text}>Error Rate by Day</Text>
        <Chart type="line" />
      </View>
    </ScrollView>
  );
};

The same applies to Stacked Bar Chart. The only complication is that it consists of multiple series, so we add a bar for each series and make a legend:

const BarChart = ({ data }) => (
  <ChartWrapper>
    <VictoryStack colorScale={colors}>
      {data.seriesNames().map((series, i) => (
        <VictoryBar
          key={i}
          x={dateFormatter}
          y={series.key.replace(":", ", ")}
          data={data.chartPivot()}
          labels={null}
          style={{
            parent: { border: "1px solid #ccc"}
          }}
        />
      ))}
    </VictoryStack>
    <VictoryLegend x={40} y={280}
      orientation="horizontal"
      colorScale={colors}
      data={data.seriesNames().map(({ title }) => ({ name: title.substring(0, 3) }))}
    />
  </ChartWrapper>
);

Now we come to the pie chart. There's a trick to hide the axis—we add an empty VictoryAxis here:

const PieChart = ({ data }) => (
  <ChartWrapper hideAxis>
    <VictoryPie
      data={data.chartPivot()}
      y="Logs.count"
      labels={item => numberFormatter(item[data.seriesNames()[0].key])}
      padAngle={3}
      innerRadius={40}
      labelRadius={70}
      style={{ labels: { fill: "white", fontSize: 14 } }}
      colorScale={colors}
    />
    <VictoryAxis style={{ axis: { stroke: "none" }, tickLabels: { fill: "none" } }} />
    <VictoryLegend x={40} y={260}
      orientation="horizontal"
      colorScale={colors}
      data={data.chartPivot().map(({ x }) => ({ name: x }))}
    />
  </ChartWrapper>
);

Here's a screenshot of the pie chart on the dashboard:

And our dashboard is done! You can find all the code and the app on Expo. You can run this app online or launch it on your device via the Expo app. It will work relatively slow as it's not compiled with platform-specific native code, but you can always download the source code and build a native app for your platform via Xcode or Android Studio.

I hope this tutorial helps you build great apps!

react-native mobile-apps ios data-analysis

Bootstrap 5 Complete Course with Examples

Bootstrap 5 Tutorial - Bootstrap 5 Crash Course for Beginners

Nest.JS Tutorial for Beginners

Hello Vue 3: A First Look at Vue 3 and the Composition API

Building a simple Applications with Vue 3

Deno Crash Course: Explore Deno and Create a full REST API with Deno

How to Build a Real-time Chat App with Deno and WebSockets

Convert HTML to Markdown Online

HTML entity encoder decoder Online

How native is React Native? | React Native vs Native App Development

Article covers: How native is react native?, React Native vs (Ionic, Cordova), Similarities and difference between React Native and Native App Development.

React Native Mobile App Development

Skenix is providing React Native Development Services with qualified React Native App Developers. Get the best React Native App Development Services.

Top React Native Mobile App Development Companies in USA

Looking for top React Native mobile app development company in USA for Startups & Enterprise? Find out the top list of React Native mobile app development company in USA.

Which is the best React Native app development company in New York?

Hire top react native app development company in New York to build and develop custom react native mobile apps for Android & iOS with the latest features.

A Short Guide to React Native App Development

React Native is undoubtedly one of the most widely used cross-platform frameworks for creating native-like apps. This framework can be easily used for developing brand-new apps from scratch and even in existing iOS or Android projects.easily used for developing brand-new apps from scratch and even in existing iOS or Android projects.