Marlee  Carter

Marlee Carter

1626671040

Azure DevOps: Setting up Sprints with Boards

Organize, Execute and Review all your User Story and Task Requirements

Introduction

A workflow is the starting point for managing activities in software projects. Workflow boards make it possible for the team to keep track of assignments to understand how goals and tasks are going.

In this tutorial, I will explain how to set up an Azure DevOps Board withsprints, user stories, and tasks.

Getting Started

Visit https://dev.azure.com to register for a free Azure DevOps account, then add a new project called Floral Force.

Once our project is created, we’re redirected to the Overview section, which gives us a high-level view of the whole project.

We’ll see options on the left-hand side:

  • Boards
  • Repos
  • Pipelines
  • Test Plans
  • Artifacts

For this tutorial, we’ll focus on Boards only.

#azure-devops #devops

What is GEEK

Buddha Community

Azure DevOps: Setting up Sprints with Boards
Hermann  Frami

Hermann Frami

1651383480

A Simple Wrapper Around Amplify AppSync Simulator

This serverless plugin is a wrapper for amplify-appsync-simulator made for testing AppSync APIs built with serverless-appsync-plugin.

Install

npm install serverless-appsync-simulator
# or
yarn add serverless-appsync-simulator

Usage

This plugin relies on your serverless yml file and on the serverless-offline plugin.

plugins:
  - serverless-dynamodb-local # only if you need dynamodb resolvers and you don't have an external dynamodb
  - serverless-appsync-simulator
  - serverless-offline

Note: Order is important serverless-appsync-simulator must go before serverless-offline

To start the simulator, run the following command:

sls offline start

You should see in the logs something like:

...
Serverless: AppSync endpoint: http://localhost:20002/graphql
Serverless: GraphiQl: http://localhost:20002
...

Configuration

Put options under custom.appsync-simulator in your serverless.yml file

| option | default | description | | ------------------------ | -------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | | apiKey | 0123456789 | When using API_KEY as authentication type, the key to authenticate to the endpoint. | | port | 20002 | AppSync operations port; if using multiple APIs, the value of this option will be used as a starting point, and each other API will have a port of lastPort + 10 (e.g. 20002, 20012, 20022, etc.) | | wsPort | 20003 | AppSync subscriptions port; if using multiple APIs, the value of this option will be used as a starting point, and each other API will have a port of lastPort + 10 (e.g. 20003, 20013, 20023, etc.) | | location | . (base directory) | Location of the lambda functions handlers. | | refMap | {} | A mapping of resource resolutions for the Ref function | | getAttMap | {} | A mapping of resource resolutions for the GetAtt function | | importValueMap | {} | A mapping of resource resolutions for the ImportValue function | | functions | {} | A mapping of external functions for providing invoke url for external fucntions | | dynamoDb.endpoint | http://localhost:8000 | Dynamodb endpoint. Specify it if you're not using serverless-dynamodb-local. Otherwise, port is taken from dynamodb-local conf | | dynamoDb.region | localhost | Dynamodb region. Specify it if you're connecting to a remote Dynamodb intance. | | dynamoDb.accessKeyId | DEFAULT_ACCESS_KEY | AWS Access Key ID to access DynamoDB | | dynamoDb.secretAccessKey | DEFAULT_SECRET | AWS Secret Key to access DynamoDB | | dynamoDb.sessionToken | DEFAULT_ACCESS_TOKEEN | AWS Session Token to access DynamoDB, only if you have temporary security credentials configured on AWS | | dynamoDb.* | | You can add every configuration accepted by DynamoDB SDK | | rds.dbName | | Name of the database | | rds.dbHost | | Database host | | rds.dbDialect | | Database dialect. Possible values (mysql | postgres) | | rds.dbUsername | | Database username | | rds.dbPassword | | Database password | | rds.dbPort | | Database port | | watch | - *.graphql
- *.vtl | Array of glob patterns to watch for hot-reloading. |

Example:

custom:
  appsync-simulator:
    location: '.webpack/service' # use webpack build directory
    dynamoDb:
      endpoint: 'http://my-custom-dynamo:8000'

Hot-reloading

By default, the simulator will hot-relad when changes to *.graphql or *.vtl files are detected. Changes to *.yml files are not supported (yet? - this is a Serverless Framework limitation). You will need to restart the simulator each time you change yml files.

Hot-reloading relies on watchman. Make sure it is installed on your system.

You can change the files being watched with the watch option, which is then passed to watchman as the match expression.

e.g.

custom:
  appsync-simulator:
    watch:
      - ["match", "handlers/**/*.vtl", "wholename"] # => array is interpreted as the literal match expression
      - "*.graphql"                                 # => string like this is equivalent to `["match", "*.graphql"]`

Or you can opt-out by leaving an empty array or set the option to false

Note: Functions should not require hot-reloading, unless you are using a transpiler or a bundler (such as webpack, babel or typescript), un which case you should delegate hot-reloading to that instead.

Resource CloudFormation functions resolution

This plugin supports some resources resolution from the Ref, Fn::GetAtt and Fn::ImportValue functions in your yaml file. It also supports some other Cfn functions such as Fn::Join, Fb::Sub, etc.

Note: Under the hood, this features relies on the cfn-resolver-lib package. For more info on supported cfn functions, refer to the documentation

Basic usage

You can reference resources in your functions' environment variables (that will be accessible from your lambda functions) or datasource definitions. The plugin will automatically resolve them for you.

provider:
  environment:
    BUCKET_NAME:
      Ref: MyBucket # resolves to `my-bucket-name`

resources:
  Resources:
    MyDbTable:
      Type: AWS::DynamoDB::Table
      Properties:
        TableName: myTable
      ...
    MyBucket:
      Type: AWS::S3::Bucket
      Properties:
        BucketName: my-bucket-name
    ...

# in your appsync config
dataSources:
  - type: AMAZON_DYNAMODB
    name: dynamosource
    config:
      tableName:
        Ref: MyDbTable # resolves to `myTable`

Override (or mock) values

Sometimes, some references cannot be resolved, as they come from an Output from Cloudformation; or you might want to use mocked values in your local environment.

In those cases, you can define (or override) those values using the refMap, getAttMap and importValueMap options.

  • refMap takes a mapping of resource name to value pairs
  • getAttMap takes a mapping of resource name to attribute/values pairs
  • importValueMap takes a mapping of import name to values pairs

Example:

custom:
  appsync-simulator:
    refMap:
      # Override `MyDbTable` resolution from the previous example.
      MyDbTable: 'mock-myTable'
    getAttMap:
      # define ElasticSearchInstance DomainName
      ElasticSearchInstance:
        DomainEndpoint: 'localhost:9200'
    importValueMap:
      other-service-api-url: 'https://other.api.url.com/graphql'

# in your appsync config
dataSources:
  - type: AMAZON_ELASTICSEARCH
    name: elasticsource
    config:
      # endpoint resolves as 'http://localhost:9200'
      endpoint:
        Fn::Join:
          - ''
          - - https://
            - Fn::GetAtt:
                - ElasticSearchInstance
                - DomainEndpoint

Key-value mock notation

In some special cases you will need to use key-value mock nottation. Good example can be case when you need to include serverless stage value (${self:provider.stage}) in the import name.

This notation can be used with all mocks - refMap, getAttMap and importValueMap

provider:
  environment:
    FINISH_ACTIVITY_FUNCTION_ARN:
      Fn::ImportValue: other-service-api-${self:provider.stage}-url

custom:
  serverless-appsync-simulator:
    importValueMap:
      - key: other-service-api-${self:provider.stage}-url
        value: 'https://other.api.url.com/graphql'

Limitations

This plugin only tries to resolve the following parts of the yml tree:

  • provider.environment
  • functions[*].environment
  • custom.appSync

If you have the need of resolving others, feel free to open an issue and explain your use case.

For now, the supported resources to be automatically resovled by Ref: are:

  • DynamoDb tables
  • S3 Buckets

Feel free to open a PR or an issue to extend them as well.

External functions

When a function is not defined withing the current serverless file you can still call it by providing an invoke url which should point to a REST method. Make sure you specify "get" or "post" for the method. Default is "get", but you probably want "post".

custom:
  appsync-simulator:
    functions:
      addUser:
        url: http://localhost:3016/2015-03-31/functions/addUser/invocations
        method: post
      addPost:
        url: https://jsonplaceholder.typicode.com/posts
        method: post

Supported Resolver types

This plugin supports resolvers implemented by amplify-appsync-simulator, as well as custom resolvers.

From Aws Amplify:

  • NONE
  • AWS_LAMBDA
  • AMAZON_DYNAMODB
  • PIPELINE

Implemented by this plugin

  • AMAZON_ELASTIC_SEARCH
  • HTTP
  • RELATIONAL_DATABASE

Relational Database

Sample VTL for a create mutation

#set( $cols = [] )
#set( $vals = [] )
#foreach( $entry in $ctx.args.input.keySet() )
  #set( $regex = "([a-z])([A-Z]+)")
  #set( $replacement = "$1_$2")
  #set( $toSnake = $entry.replaceAll($regex, $replacement).toLowerCase() )
  #set( $discard = $cols.add("$toSnake") )
  #if( $util.isBoolean($ctx.args.input[$entry]) )
      #if( $ctx.args.input[$entry] )
        #set( $discard = $vals.add("1") )
      #else
        #set( $discard = $vals.add("0") )
      #end
  #else
      #set( $discard = $vals.add("'$ctx.args.input[$entry]'") )
  #end
#end
#set( $valStr = $vals.toString().replace("[","(").replace("]",")") )
#set( $colStr = $cols.toString().replace("[","(").replace("]",")") )
#if ( $valStr.substring(0, 1) != '(' )
  #set( $valStr = "($valStr)" )
#end
#if ( $colStr.substring(0, 1) != '(' )
  #set( $colStr = "($colStr)" )
#end
{
  "version": "2018-05-29",
  "statements":   ["INSERT INTO <name-of-table> $colStr VALUES $valStr", "SELECT * FROM    <name-of-table> ORDER BY id DESC LIMIT 1"]
}

Sample VTL for an update mutation

#set( $update = "" )
#set( $equals = "=" )
#foreach( $entry in $ctx.args.input.keySet() )
  #set( $cur = $ctx.args.input[$entry] )
  #set( $regex = "([a-z])([A-Z]+)")
  #set( $replacement = "$1_$2")
  #set( $toSnake = $entry.replaceAll($regex, $replacement).toLowerCase() )
  #if( $util.isBoolean($cur) )
      #if( $cur )
        #set ( $cur = "1" )
      #else
        #set ( $cur = "0" )
      #end
  #end
  #if ( $util.isNullOrEmpty($update) )
      #set($update = "$toSnake$equals'$cur'" )
  #else
      #set($update = "$update,$toSnake$equals'$cur'" )
  #end
#end
{
  "version": "2018-05-29",
  "statements":   ["UPDATE <name-of-table> SET $update WHERE id=$ctx.args.input.id", "SELECT * FROM <name-of-table> WHERE id=$ctx.args.input.id"]
}

Sample resolver for delete mutation

{
  "version": "2018-05-29",
  "statements":   ["UPDATE <name-of-table> set deleted_at=NOW() WHERE id=$ctx.args.id", "SELECT * FROM <name-of-table> WHERE id=$ctx.args.id"]
}

Sample mutation response VTL with support for handling AWSDateTime

#set ( $index = -1)
#set ( $result = $util.parseJson($ctx.result) )
#set ( $meta = $result.sqlStatementResults[1].columnMetadata)
#foreach ($column in $meta)
    #set ($index = $index + 1)
    #if ( $column["typeName"] == "timestamptz" )
        #set ($time = $result["sqlStatementResults"][1]["records"][0][$index]["stringValue"] )
        #set ( $nowEpochMillis = $util.time.parseFormattedToEpochMilliSeconds("$time.substring(0,19)+0000", "yyyy-MM-dd HH:mm:ssZ") )
        #set ( $isoDateTime = $util.time.epochMilliSecondsToISO8601($nowEpochMillis) )
        $util.qr( $result["sqlStatementResults"][1]["records"][0][$index].put("stringValue", "$isoDateTime") )
    #end
#end
#set ( $res = $util.parseJson($util.rds.toJsonString($util.toJson($result)))[1][0] )
#set ( $response = {} )
#foreach($mapKey in $res.keySet())
    #set ( $s = $mapKey.split("_") )
    #set ( $camelCase="" )
    #set ( $isFirst=true )
    #foreach($entry in $s)
        #if ( $isFirst )
          #set ( $first = $entry.substring(0,1) )
        #else
          #set ( $first = $entry.substring(0,1).toUpperCase() )
        #end
        #set ( $isFirst=false )
        #set ( $stringLength = $entry.length() )
        #set ( $remaining = $entry.substring(1, $stringLength) )
        #set ( $camelCase = "$camelCase$first$remaining" )
    #end
    $util.qr( $response.put("$camelCase", $res[$mapKey]) )
#end
$utils.toJson($response)

Using Variable Map

Variable map support is limited and does not differentiate numbers and strings data types, please inject them directly if needed.

Will be escaped properly: null, true, and false values.

{
  "version": "2018-05-29",
  "statements":   [
    "UPDATE <name-of-table> set deleted_at=NOW() WHERE id=:ID",
    "SELECT * FROM <name-of-table> WHERE id=:ID and unix_timestamp > $ctx.args.newerThan"
  ],
  variableMap: {
    ":ID": $ctx.args.id,
##    ":TIMESTAMP": $ctx.args.newerThan -- This will be handled as a string!!!
  }
}

Requires

Author: Serverless-appsync
Source Code: https://github.com/serverless-appsync/serverless-appsync-simulator 
License: MIT License

#serverless #sync #graphql 

How to Extend your DevOps Strategy For Success in the Cloud?

DevOps and Cloud computing are joined at the hip, now that fact is well appreciated by the organizations that engaged in SaaS cloud and developed applications in the Cloud. During the COVID crisis period, most of the organizations have started using cloud computing services and implementing a cloud-first strategy to establish their remote operations. Similarly, the extended DevOps strategy will make the development process more agile with automated test cases.

According to the survey in EMEA, IT decision-makers have observed a 129%* improvement in the overall software development process when performing DevOps on the Cloud. This success result was just 81% when practicing only DevOps and 67%* when leveraging Cloud without DevOps. Not only that, but the practice has also made the software predictability better, improve the customer experience as well as speed up software delivery 2.6* times faster.

3 Core Principle to fit DevOps Strategy

If you consider implementing DevOps in concert with the Cloud, then the

below core principle will guide you to utilize the strategy.

  • It is indispensable to follow a continuous process, including all stages from Dev to deploy with the help of auto-provisioning resources of the target platform.
  • The team always keeps an eye on major and minor application changes that can typically appear within a few hours of development to operation. However, the support of unlimited resource provisioning is needed at the stage of deployment.
  • Cloud or hybrid configuration can associate this process, but you must confirm that configuration should support multiple cloud brands like Microsoft, AWS, Google, any public and private cloud models.

Guide to Remold Business with DevOps and Cloud

Companies are now re-inventing themselves to become better at sensing the next big thing their customers need and finding ways with the Cloud based DevOps to get ahead of the competition.

#devops #devops-principles #azure-devops #devops-transformation #good-company #devops-tools #devops-top-story #devops-infrastructure

Nabunya  Jane

Nabunya Jane

1624939448

A side-by-side comparison of Azure DevOps and GitHub

Collaboration is a crucial element in software development; having the right collaboration tools can make a difference and boost the entire team’s productivity. Microsoft introduced its Application Lifecycle Management product with Team Foundation Server (aka TFS) on March 16th, 2006. This software had to be installed on a server within your network and had a user-based license. To reduce the complexity of setting up and maintaining the server, Microsoft released Visual Studio Online–an Azure-based, server-hosted version of TFS. Microsoft manages and administers the servers as well as taking care of backups. To clarify its commitment to agile and DevOps, Microsoft rebranded Visual Studio Online in 2015 as Visual Studio Team Services and later as Azure DevOps in 2018.

Since its beginning, this platform has changed significantly. For example, it introduced a customizable, task-based build service, release gates, and much more. Many organizations across the world made a significant investment to run their businesses on Azure DevOps. For this reason, after Microsoft announced the acquisition of GitHub in mid-2018, GitHub announced its automated workflow system, which is much like Azure Pipelines. It’s called GitHub Actions. Due to the switch, some companies became afraid of having to migrate their practices again. In the past few months, I have gotten several questions about whether it is still worth starting new projects on Azure DevOps, especially after the release of features like GitHub Advanced Security and GitHub Codespaces (similar to Visual Studio Codespaces). In this article, I’ll clarify the differences between these two platforms, and I’ll give you some advice on how you should be using them to your advantage.

Data Residency

To meet the needs of companies that want to keep their data within their network, both GitHub and Azure DevOps provide a server version of their platform. GitHub version is called GitHub Enterprise Server, and the Azure DevOps version is called Azure DevOps Server. Both versions require the client to install and maintain both software and machine.

On the other hand, there is a critical difference between their cloud-hosted version. While Azure DevOps Service allows you to choose the Azure region, which is closes to your organization’s location, to decrease the eventuality of networking latency during the creation of your organization (collection of projects). GitHub doesn’t provide this feature.

Project management and bug tracking

GitHub

At the core of GitHub project management, we can find the issues. This task can be used to track any work item, from feature to bugs, and can be sorted into a Kanban-style board for easy consultation. The issue’s description also supports markdown syntax. Adding a specific keyword #issue-number (ex: #3) can associate the issue with another one. Each issue can be assigned to multiple developers, be linked to pull requests, and have various labels assigned to it. One can link a pull request to an issue to show that a fix is in progress and automatically close the issue when someone merges the pull request.

GitHub Kanban board

  • Lastly, multiple issues can be grouped into milestones that will give immediate feedback about the completion percentage. Milestones can also include a due date.

#azure-devops #microsoft #azure #github #azure devops #azure devops and github

Osborne  Durgan

Osborne Durgan

1591093172

Create, Build, Deploy and Configure an Azure Function with Azure DevOps and Azure CLI

This post shows how to create, build, deploy and configure an Azure Function using Azure DevOps, Azure CLI and Powershell. An Azure Function is created in Azure using Azure DevOps with Azure CLI and Powershell. The Azure Function (V3) project is created and built using Visual Studio and C#. This project is deployed to the Azure infrastructure using a second Azure DevOps Pipeline. The Azure Function configuration settings is configured to use Azure Key Vault for secrets.

#asp.net core #azure #devops #.net core #azure devops #azure functions #cli #powershell