Salman Ahmad

1603452900

How to Make XHR Request to Get JSON of MongoDB Collection

This guide walks you through the essentials of making an XHR request to an endpoint on an express server to get JSON of a Mongo collection in your MongoDB database.

1: Setting up the Backend

First, create a new npm project using the following command:

npm init -y 

Install mongoose, body-parser, and express.

npm i mongoose express body-parser 

2: Creating a Schema

Create a schema called todoSchema for your Mongo collection and a model called Todo, as shown below, and export it using module.exports.

const mongoose=require('mongoose'); 
 
const todoSchema=mongoose.Schema({ 
 name:{ 
 type:String, 
 required:true 
 }, 
 status:{ 
 type:String, 
 required:true 
 } 
},{timestamps:true}) 
 
const Todo=mongoose.model('Todo',todoSchema); 
module.exports=Todo; 

3: Creating a Controller

Create a controller for fetching all the to-do's from your Mongo collection using the find() method on your model and export it at the end.

const Todo=require('./../models/Todo'); 
 
 
const getTodos=(req,res)=>{ 
 
 Todo.find() 
 .then(result=>{ 
 console.log('result: ',result) 
 res.send(result.length>0?result:'No Todos'); 
 }) 
 .catch(err=>{ 
 console.log(err); 
 }) 
} 
 
module.exports={ 
 getTodos 
} 

4: Setting up an Express Router

Create a router instance of the express by invoking the Router() method on it. Next, create a route that will act as an API endpoint to get all the to-do's from your Mongo collection by calling the get() method and passing the route as the first parameter and your controller function as the second parameter.

const express=require('express'); 
const todoController=require('./controllers/todoConroller'); 
 
const router=express.Router(); 
 
module.exports=router.get('/todos',todoController.getTodos); 

Finally, put it all together by creating an express app and connecting your MongoDB database. This example uses MongoDB Atlas to create and connect to the cloud database using a dbURI string.

const express=require('express'); 
const mongoose=require('mongoose'); 
const bodyParser=require('body-parser'); 
const routes=require('./routes'); 
 
const PORT=5000; 
 
const dbURI=<Add your MongoDB atlas dbURI here> 
 
const app=express(); 
 
mongoose.connect(dbURI,{useNewUrlParser:true,useUnifiedTopology:true}) 
 .then(()=>{ 
 app.listen(PORT,(req,res)=>{ 
 console.log(`connected to db`); 
 }) 
 }) 
 .catch(err=>{ 
 console.log(err); 
 }) 
 
 
app.use(bodyParser.json()) 
app.use(routes) 

You can now access your mongo collection using the endpoint http://localhost:5000/todos after running the node app in the terminal.


5: Creating the Frontend

The Mongo collection you will consume looks like this:

[ 
 { 
 "_id": "5f709a7fe510821d48eaf3cc", 
 "name": "Paint a picture", 
 "status": "Incomplete", 
 "createdAt": "2020-09-27T13:58:23.023Z", 
 "updatedAt": "2020-09-27T14:01:32.580Z", 
 "__v": 0 
 }, 
 { 
 "_id": "5f71dcf907cf490004e07d80", 
 "name": "Walk the Dog", 
 "status": "Incomplete", 
 "createdAt": "2020-09-28T12:54:17.877Z", 
 "updatedAt": "2020-09-28T12:54:17.877Z", 
 "__v": 0 
 }, 
 { 
 "_id": "5f71dd1207cf490004e07d81", 
 "name": "Cook Dinner", 
 "status": "In Progress", 
 "createdAt": "2020-09-28T12:54:42.340Z", 
 "updatedAt": "2020-09-28T12:54:42.340Z", 
 "__v": 0 
 } 
] 

6: Making an XHR Request

Inside your React app, import useState and useEffect. The useState hook is used to create a state where the JSON object from the endpoint is stored. Make an XHR request inside the useEffect lifecycle hook's callback function using the XMLHttpRequest object. Have a look at the following code:

import React,{useState, useEffect} from 'react'; 
import './App.css'; 
 
function App() { 
 const [todos,setTodos]=useState() 
 useEffect(()=>{ 
 var request = new XMLHttpRequest(); 
 request.onreadystatechange = function() { 
 if (request.readyState == 4 && request.status == 200) { 
 const response=JSON.parse(request.response) 
 setTodos(response) 
 } 
 }; 
 request.open('GET', 'http://localhost:5000/todos', true); 
 request.send(); 
 },[]) 
 
 useEffect(()=>{ 
 console.log(todos) 
 },[todos]) 
 return ( 
 <div className="App"> 
 </div> 
 ); 
} 
 
export default App; 

This is how you make an XHR request to get JSON of your Mongo collection and store it inside a local state of your component. As a final step, you can render this collection's details on the DOM by looping through the state.

 ... 
 <div className="App"> 
 {todos && todos.map(todo=><p>{todo.name}</p>)} 
 </div> 
 ... 

Now you can see the to-do's from your Mongo collection on the page.

#react #json

What is GEEK

Buddha Community

Shubham Ankit

Shubham Ankit

1657081614

How to Automate Excel with Python | Python Excel Tutorial (OpenPyXL)

How to Automate Excel with Python

In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation

What is OPENPYXL

Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.

Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.

Sheet: A sheet is a single page composed of cells for organizing data.

Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.

Row: A row is a horizontal line represented by a number (1,2, etc.).

Column: A column is a vertical line represented by a capital letter (A, B, etc.).

Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.

pip install openpyxl

CREATE A NEW WORKBOOK

We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook() which creates a new workbook.

from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method

ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position

#Renaming the sheet
ws.title = "Example"

#save the workbook
wb.save(filename = "example.xlsx")

READING DATA FROM WORKBOOK

We load the file using the function load_Workbook() which takes the filename as an argument. The file must be saved in the same working directory.

#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")

 

GETTING SHEETS FROM THE LOADED WORKBOOK

 

#getting sheet names
wb.sheetnames
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']

#getting a particular sheet
sheet1 = wb["sheet2"]

#getting sheet title
sheet1.title
result = 'sheet2'

#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'

 

ACCESSING CELLS AND CELL VALUES

 

#get a cell from the sheet
sheet1["A1"] <
  Cell 'Sheet1'.A1 >

  #get the cell value
ws["A1"].value 'Segment'

#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)
d.value
10

 

ITERATING THROUGH ROWS AND COLUMNS

 

#looping through each row and column
for x in range(1, 5):
  for y in range(1, 5):
  print(x, y, ws.cell(row = x, column = y)
    .value)

#getting the highest row number
ws.max_row
701

#getting the highest column number
ws.max_column
19

There are two functions for iterating through rows and columns.

Iter_rows() => returns the rows
Iter_cols() => returns the columns {
  min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.

Example:

#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
  for cell in row:
  print(cell) <
  Cell 'Sheet1'.A2 >
  <
  Cell 'Sheet1'.B2 >
  <
  Cell 'Sheet1'.C2 >
  <
  Cell 'Sheet1'.A3 >
  <
  Cell 'Sheet1'.B3 >
  <
  Cell 'Sheet1'.C3 >

  #iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
  for cell in col:
  print(cell) <
  Cell 'Sheet1'.A2 >
  <
  Cell 'Sheet1'.A3 >
  <
  Cell 'Sheet1'.B2 >
  <
  Cell 'Sheet1'.B3 >
  <
  Cell 'Sheet1'.C2 >
  <
  Cell 'Sheet1'.C3 >

To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.


Example:

for row in ws.values:
  for value in row:
  print(value)

 

WRITING DATA TO AN EXCEL FILE

Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.

 

CREATING AND SAVING A NEW WORKBOOK

 

#creates a new workbook
wb = openpyxl.Workbook()

#saving the workbook
wb.save("new.xlsx")

 

ADDING AND REMOVING SHEETS

 

#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")

#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")

#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']

#deleting a sheet
del wb['sheet 0']

#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']

 

ADDING CELL VALUES

 

#checking the sheet value
ws['B2'].value
null

#adding value to cell
ws['B2'] = 367

#checking value
ws['B2'].value
367

 

ADDING FORMULAS

 

We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.
 

For example:

import openpyxl
from openpyxl
import Workbook

wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']

ws['A9'] = '=SUM(A2:A8)'

wb.save("new2.xlsx")

The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.

image

 

MERGE/UNMERGE CELLS

Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().

For example:
Merge cells

#merge cells B2 to C9
ws.merge_cells('B2:C9')
ws['B2'] = "Merged cells"

Adding the above code to the previous example will merge cells as below.

image

UNMERGE CELLS

 

#unmerge cells B2 to C9
ws.unmerge_cells('B2:C9')

The above code will unmerge cells from B2 to C9.

INSERTING AN IMAGE

To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.

Example:

import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image

wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3

ws.add_image(img, 'A3')

wb.save("new2.xlsx")

Result:

image

CREATING CHARTS

Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:

Example

import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series

wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active

values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
chart.add_data(values)
ws.add_chart(chart, "E3")
wb.save("MyChart.xlsx")

Result
image


How to Automate Excel with Python with Video Tutorial

Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.

⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling

📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/ 
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial 
Subscribe: https://www.youtube.com/c/TechWithTim/featured 

#python 

Query of MongoDB | MongoDB Command | MongoDB | Asp.Net Core Mvc

https://youtu.be/FwUobnB5pv8

#mongodb tutorial #mongodb tutorial for beginners #mongodb database #mongodb with c# #mongodb with asp.net core #mongodb

Brandon  Adams

Brandon Adams

1625637060

What is JSON? | JSON Objects and JSON Arrays | Working with JSONs Tutorial

In this video, we work with JSONs, which are a common data format for most web services (i.e. APIs). Thank you for watching and happy coding!

Need some new tech gadgets or a new charger? Buy from my Amazon Storefront https://www.amazon.com/shop/blondiebytes

What is an API?
https://youtu.be/T74OdSCBJfw

JSON Google Extension
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en

Endpoint Example
http://maps.googleapis.com/maps/api/geocode/json?address=13+East+60th+Street+New+York,+NY

Check out my courses on LinkedIn Learning!
REFERRAL CODE: https://linkedin-learning.pxf.io/blondiebytes
https://www.linkedin.com/learning/instructors/kathryn-hodge

Support me on Patreon!
https://www.patreon.com/blondiebytes

Check out my Python Basics course on Highbrow!
https://gohighbrow.com/portfolio/python-basics/

Check out behind-the-scenes and more tech tips on my Instagram!
https://instagram.com/blondiebytes/

Free HACKATHON MODE playlist:
https://open.spotify.com/user/12124758083/playlist/6cuse5033woPHT2wf9NdDa?si=VFe9mYuGSP6SUoj8JBYuwg

MY FAVORITE THINGS:
Stitch Fix Invite Code: https://www.stitchfix.com/referral/10013108?sod=w&som=c
FabFitFun Invite Code: http://xo.fff.me/h9-GH
Uber Invite Code: kathrynh1277ue
Postmates Invite Code: 7373F
SoulCycle Invite Code: https://www.soul-cycle.com/r/WY3DlxF0/
Rent The Runway: https://rtr.app.link/e/rfHlXRUZuO

Want to BINGE?? Check out these playlists…

Quick Code Tutorials: https://www.youtube.com/watch?v=4K4QhIAfGKY&index=1&list=PLcLMSci1ZoPu9ryGJvDDuunVMjwKhDpkB

Command Line: https://www.youtube.com/watch?v=Jm8-UFf8IMg&index=1&list=PLcLMSci1ZoPvbvAIn_tuSzMgF1c7VVJ6e

30 Days of Code: https://www.youtube.com/watch?v=K5WxmFfIWbo&index=2&list=PLcLMSci1ZoPs6jV0O3LBJwChjRon3lE1F

Intermediate Web Dev Tutorials: https://www.youtube.com/watch?v=LFa9fnQGb3g&index=1&list=PLcLMSci1ZoPubx8doMzttR2ROIl4uzQbK

GitHub | https://github.com/blondiebytes

Twitter | https://twitter.com/blondiebytes

LinkedIn | https://www.linkedin.com/in/blondiebytes

#jsons #json arrays #json objects #what is json #jsons tutorial #blondiebytes

Install MongoDB Database | MongoDB | Asp.Net Core Mvc

#MongoDB
#Aspdotnetexplorer

https://youtu.be/cnwNWzcw3NM

#mongodb #mongodb database #mongodb with c# #mongodb with asp.net core #mongodb tutorial for beginners #mongodb tutorial

Monty  Boehm

Monty Boehm

1659453850

Twitter.jl: Julia Package to Access Twitter API

Twitter.jl

A Julia package for interacting with the Twitter API.

Twitter.jl is a Julia package to work with the Twitter API v1.1. Currently, only the REST API methods are supported; streaming API endpoints aren't implemented at this time.

All functions have required arguments for those parameters required by Twitter and an options keyword argument to provide a Dict{String, String} of optional parameters Twitter API documentation. Most function calls will return either a Dict or an Array <: TwitterType. Bad requests will return the response code from the API (403, 404, etc).

DataFrame methods are defined for functions returning composite types: Tweets, Places, Lists, and Users.

Authentication

Before one can make use of this package, you must create an application on the Twitter's Developer Platform.

Once your application is approved, you can access your dashboard/portal to grab your authentication credentials from the "Details" tab of the application.

Note that you will also want to ensure that your App has Read / Write OAuth access in order to post tweets. You can find out more about this on Stack Overflow.

Installation

To install this package, enter ] on the REPL to bring up Julia's package manager. Then add the package:

julia> ]
(v1.7) pkg> add Twitter

Tip: Press Ctrl+C to return to the julia> prompt.

Usage

To run Twitter.jl, enter the following command in your Julia REPL

julia> using Twitter

Then the a global variable has to be declared with the twitterauth function. This function holds the consumer_key(API Key), consumer_secret(API Key Secret), oauth_token(Access Token), and oauth_secret(Access Token Secret) respectively.

twitterauth("6nOtpXmf...", # API Key
            "sES5Zlj096S...", # API Key Secret
            "98689850-Hj...", # Access Token
            "UroqCVpWKIt...") # Access Token Secret
  • Ensure you put your credentials in an env file to avoid pushing your secrets to the public 🙀.

Note: This package does not currently support OAuth authentication.

Code examples

See runtests.jl for example function calls.

using Twitter, Test
using JSON, OAuth

# set debugging
ENV["JULIA_DEBUG"]=Twitter

twitterauth(ENV["CONSUMER_KEY"], ENV["CONSUMER_SECRET"], ENV["ACCESS_TOKEN"], ENV["ACCESS_TOKEN_SECRET"])

#get_mentions_timeline
mentions_timeline_default = get_mentions_timeline()
tw = mentions_timeline_default[1]
tw_df = DataFrame(mentions_timeline_default)
@test 0 <= length(mentions_timeline_default) <= 20
@test typeof(mentions_timeline_default) == Vector{Tweets}
@test typeof(tw) == Tweets
@test size(tw_df)[2] == 30

#get_user_timeline
user_timeline_default = get_user_timeline(screen_name = "randyzwitch")
@test typeof(user_timeline_default) == Vector{Tweets}

#get_home_timeline
home_timeline_default = get_home_timeline()
@test typeof(home_timeline_default) == Vector{Tweets}

#get_single_tweet_id
get_tweet_by_id = get_single_tweet_id(id = "434685122671939584")
@test typeof(get_tweet_by_id) == Tweets

#get_search_tweets
duke_tweets = get_search_tweets(q = "#Duke", count = 200)
@test typeof(duke_tweets) <: Dict

#test sending/deleting direct messages
#commenting out because Twitter API changed. Come back to fix
# send_dm = post_direct_messages_send(text = "Testing from Julia, this might disappear later $(time())", screen_name = "randyzwitch")
# get_single_dm = get_direct_messages_show(id = send_dm.id)
# destroy = post_direct_messages_destroy(id = send_dm.id)
# @test typeof(send_dm) == Tweets
# @test typeof(get_single_dm) == Tweets
# @test typeof(destroy) == Tweets

#creating/destroying friendships
add_friend = post_friendships_create(screen_name = "kyrieirving")

unfollow = post_friendships_destroy(screen_name = "kyrieirving")
unfollow_df = DataFrame(unfollow)
@test typeof(add_friend) == Users
@test typeof(unfollow) == Users
@test size(unfollow_df)[2] == 40

# create a cursor for follower ids
follow_cursor_test = get_followers_ids(screen_name = "twitter", count = 10_000)
@test length(follow_cursor_test["ids"]) == 10_000

# create a cursor for friend ids - use barackobama because he follows a lot of accounts!
friend_cursor_test = get_friends_ids(screen_name = "BarackObama", count = 10_000)
@test length(friend_cursor_test["ids"]) == 10_000

# create a test for home timelines
home_t = get_home_timeline(count = 2)
@test length(home_t) > 1

# TEST of cursoring functionality on user timelines
user_t = get_user_timeline(screen_name = "stefanjwojcik", count = 400)
@test length(user_t) == 400
# get the minimum ID of the tweets returned (the earliest)
minid = minimum(x.id for x in user_t);

# now iterate until you hit that tweet: should return 399
# WARNING: current versions of julia cannot use keywords in macros? read here: https://github.com/JuliaLang/julia/pull/29261
# eventually replace since_id = minid
tweets_since = get_user_timeline(screen_name = "stefanjwojcik", count = 400, since_id = 1001808621053898752, include_rts=1)

@test length(tweets_since)>=399

# testing get_mentions_timeline
mentions = get_mentions_timeline(screen_name = "stefanjwojcik", count = 300) 
@test length(mentions) >= 50 #sometimes API doesn't return number requested (twitter API specifies count is the max returned, may be much lower)
@test Tweets<:typeof(mentions[1])

# testing retweets_of_me
my_rts = get_retweets_of_me(count = 300)
@test Tweets<:typeof(my_rts[1])

Want to contribute?

Contributions are welcome! Kindly refer to the contribution guidelines.

Linux: Build Status 

CodeCov: codecov

Author: Randyzwitch
Source Code: https://github.com/randyzwitch/Twitter.jl 
License: View license

#julia #api #twitter