Hunter  Krajcik

Hunter Krajcik


Why & How to Get Started: A Serverless Function Example

There’s one thing that will always fascinate me about the worldwide dev community:

Our ability to come up with solutions that consistently make our job less painful.

Because let’s be honest, some tasks that come with being a developer are… tedious.

Personally, something like maintaining servers always seems to be a pain in my a**. Not what I signed for at all.

That’s why I’m pretty pumped today to write about serverless architectures and why it’s a programming trend worth learning about.

As we already did for APIs and webhooks, this post serves as an introduction to the concepts behind serverless programming. I also crafted a small serverless app example to get a better understanding of it all.


What is GEEK

Buddha Community

Why & How to Get Started: A Serverless Function Example
Christa  Stehr

Christa Stehr


Overcoming Common Serverless Challenges with Mainframe CICS Programs

By this point most enterprises, including those running on legacy infrastructures, are familiar with the benefits of serverless computing:

  • Greater scalability
  • Faster development
  • More efficient deployment
  • Lower cost

The benefits of agility and cost reduction are especially relevant in the current macroeconomic environment when customer behavior is changing, end-user needs are difficult to predict, and development teams are under pressure to do more with less.

So serverless is a no-brainer, right?

Not exactly. Serverless might be relatively painless for a new generation of cloud-native software companies that grew up in a world of APIs and microservices, but it creates headaches for the many organizations that still rely heavily on legacy infrastructure.

In particular, enterprises running mainframe CICS programs are likely to encounter frustrating stumbling blocks on the path to launching Functions as a Service (FaaS). This population includes global enterprises that depend on CICS applications to effectively manage high-volume transactional processing requirements – particularly in the banking, financial services, and insurance industries.

These organizations stand to achieve time and cost savings through a modern approach to managing legacy infrastructure, as opposed to launching serverless applications on a brittle foundation. Here are three of the biggest obstacles they face and how to overcome them.

Challenge #1

Middleware that introduces complexity, technical debt, and latency. Many organizations looking to integrate CICS applications into a microservices or serverless architecture rely on middleware (e.g., an ESB or SOA) to access data from the underlying applications. This strategy introduces significant runtime performance challenges and creates what one bank’s chief architect referred to as a “lasagna architecture,” making DevOps impossible.

#serverless architecture #serverless functions #serverless benefits #mainframes #serverless api #serverless integration

Noah  Rowe

Noah Rowe


Cloud Function on GCP (Jakarta Region) & Serverless Framework

Hi everyone, I just heard from fellow Google Customer Engineer that Cloud Function now available in my region Jakarta! It is exciting news as now we can utilize the Cloud Function within the Region itself!

Cloud Functions Locations | Cloud Functions Documentation

Image for post

So with that kind of news, I am interested to actually test it out for a small experience of serverless in this new availability in the Jakarta region. (If you have any further or more elaborated experience please do share it with me!)

Now the idea is just to test the basic functionality of the Cloud Function to just do the most famous code ever (Hello World — who did not know this code?) and tested it with the HTTP trigger (the most basic one) and also tested the Serverless Framework to deploy the code.

Shall we test?

[One] let’s just try to create the function from the UI and go to Cloud Function — ensure that the API is already enabled — and create a new function.

Image for post

Sorry for the mistake caused by the dual monitor, I am kinda lazy to redo the capture. I created the function in Asia-southeast2 (Jakarta!) and allow unauthorized invocation.

Image for post

just use the default hello world function using the Node.js 12 and deploy

So after the deployment, we can test it through several ways which the easiest is through the UI

Image for post


These are the triggers that actually Cloud Function is able to use, so it is more than just meet the eyes. Well, I will keep the other for some future stories.

Image for post

For other kinds of test, we can use the gcloud cli call

gcloud functions call <function name> --region <region> --data {<any data>}

Image for post

It runs!

Or we can just use the plain old curl

curl -X POST "https://<region>-<project name><function name>" -H "Content-type:application/json" --data '{}'

#gcp #serverless #cloud-functions #serverless-framework #jakarta-region #function

Vincent Lab

Vincent Lab


The Difference Between Regular Functions and Arrow Functions in JavaScript

Other then the syntactical differences. The main difference is the way the this keyword behaves? In an arrow function, the this keyword remains the same throughout the life-cycle of the function and is always bound to the value of this in the closest non-arrow parent function. Arrow functions can never be constructor functions so they can never be invoked with the new keyword. And they can never have duplicate named parameters like a regular function not using strict mode.

Here are a few code examples to show you some of the differences = "Bob";

const person = {
name: “Jon”,

<span style="color: #008000">// Regular function</span>
func1: <span style="color: #0000ff">function</span> () {
    console.log(<span style="color: #0000ff">this</span>);

<span style="color: #008000">// Arrow function</span>
func2: () =&gt; {
    console.log(<span style="color: #0000ff">this</span>);


person.func1(); // Call the Regular function
// Output: {name:“Jon”, func1:[Function: func1], func2:[Function: func2]}

person.func2(); // Call the Arrow function
// Output: {name:“Bob”}

The new keyword with an arrow function
const person = (name) => console.log("Your name is " + name);
const bob = new person("Bob");
// Uncaught TypeError: person is not a constructor

If you want to see a visual presentation on the differences, then you can see the video below:

#arrow functions #javascript #regular functions #arrow functions vs normal functions #difference between functions and arrow functions

Get Started with Java Serverless Functions

Quarkus allows you to develop serverless workloads with familiar Java technology.

The  serverless Java journey started out with functions—small snippets of code running on demand. This phase didn’t last long. Although functions based on virtual machine architecture in the 1.0 phase made this paradigm very popular, as the graphic below shows, there were limits around execution time, protocols, and poor local-development experience.

Developers then realized that they could apply the same serverless traits and benefits to microservices and Linux containers. This launched the 1.5 phase, where some serverless containers completely abstracted  Kubernetes, delivering the serverless experience through  Knative or another abstraction layer that sits on top of it.

In the 2.0 phase, serverless starts to handle more complex orchestration and integration patterns combined with some level of state management. More importantly, developers want to keep using a familiar application runtime, Java, to run a combination of serverless and non-serverless workloads in legacy systems.

Before Java developers can start developing new serverless functions, their first task is to choose a new cloud-native Java framework that allows them to run Java functions quicker with a smaller memory footprint than traditional monolithic applications. This can be applied to various infrastructure environments, from physical servers to virtual machines to containers in multi- and hybrid-cloud environments.

Developers might consider an opinionated Spring framework that uses the java.util.function package in  Spring Cloud Function to support the development of imperative and reactive functions. Spring also enables developers to deploy Java functions to installable serverless platforms such as  Kubeless,  Apache OpenWhisk,  Fission, and  Project Riff. However, there are concerns about slow startup and response times and heavy memory-consuming processes with Spring. This problem can be worse when running Java functions on scalable container environments such as Kubernetes.

Quarkus is a new open source cloud-native Java framework that can help solve these problems. It aims to design serverless applications and write cloud-native microservices for running on cloud infrastructures (e.g., Kubernetes).

#java #serverless #kubernates #function #quarkus #knative

Ashish parmar

Ashish parmar


Serverless Applications - Pros and Cons to Help Businesses Decide - Prismetric

In the past few years, especially after Amazon Web Services (AWS) introduced its Lambda platform, serverless architecture became the business realm’s buzzword. The increasing popularity of serverless applications saw market leaders like Netflix, Airbnb, Nike, etc., adopting the serverless architecture to handle their backend functions better. Moreover, serverless architecture’s market size is expected to reach a whopping $9.17 billion by the year 2023.


Why use serverless computing?
As a business it is best to approach a professional mobile app development company to build apps that are deployed on various servers; nevertheless, businesses should understand that the benefits of the serverless applications lie in the possibility it promises ideal business implementations and not in the hype created by cloud vendors. With the serverless architecture, the developers can easily code arbitrary codes on-demand without worrying about the underlying hardware.

But as is the case with all game-changing trends, many businesses opt for serverless applications just for the sake of being up-to-date with their peers without thinking about the actual need of their business.

The serverless applications work well with stateless use cases, the cases which execute cleanly and give the next operation in a sequence. On the other hand, the serverless architecture is not fit for predictable applications where there is a lot of reading and writing in the backend system.

Another benefit of working with the serverless software architecture is that the third-party service provider will charge based on the total number of requests. As the number of requests increases, the charge is bound to increase, but then it will cost significantly less than a dedicated IT infrastructure.

Defining serverless software architecture
In serverless software architecture, the application logic is implemented in an environment where operating systems, servers, or virtual machines are not visible. Although where the application logic is executed is running on any operating system which uses physical servers. But the difference here is that managing the infrastructure is the soul of the service provider and the mobile app developer focuses only on writing the codes.

There are two different approaches when it comes to serverless applications. They are

Backend as a service (BaaS)
Function as a service (FaaS)

  1. Backend as a service (BaaS)
    The basic required functionality of the growing number of third party services is to provide server-side logic and maintain their internal state. This requirement has led to applications that do not have server-side logic or any application-specific logic. Thus they depend on third-party services for everything.

Moreover, other examples of third-party services are Autho, AWS Cognito (authentication as a service), Amazon Kinesis, Keen IO (analytics as a service), and many more.

  1. Function as a Service (FaaS)
    FaaS is the modern alternative to traditional architecture when the application still requires server-side logic. With Function as a Service, the developer can focus on implementing stateless functions triggered by events and can communicate efficiently with the external world.

FaaS serverless architecture is majorly used with microservices architecture as it renders everything to the organization. AWS Lambda, Google Cloud functions, etc., are some of the examples of FaaS implementation.

Pros of Serverless applications
There are specific ways in which serverless applications can redefine the way business is done in the modern age and has some distinct advantages over the traditional could platforms. Here are a few –

🔹 Highly Scalable
The flexible nature of the serverless architecture makes it ideal for scaling the applications. The serverless application’s benefit is that it allows the vendor to run each of the functions in separate containers, allowing optimizing them automatically and effectively. Moreover, unlike in the traditional cloud, one doesn’t need to purchase a certain number of resources in serverless applications and can be as flexible as possible.

🔹 Cost-Effective
As the organizations don’t need to spend hundreds and thousands of dollars on hardware, they don’t need to pay anything to the engineers to maintain the hardware. The serverless application’s pricing model is execution based as the organization is charged according to the executions they have made.

The company that uses the serverless applications is allotted a specific amount of time, and the pricing of the execution depends on the memory required. Different types of costs like presence detection, access authorization, image processing, etc., associated with a physical or virtual server is completely eliminated with the serverless applications.

🔹 Focuses on user experience
As the companies don’t always think about maintaining the servers, it allows them to focus on more productive things like developing and improving customer service features. A recent survey says that about 56% of the users are either using or planning to use the serverless applications in the coming six months.

Moreover, as the companies would save money with serverless apps as they don’t have to maintain any hardware system, it can be then utilized to enhance the level of customer service and features of the apps.

🔹 Ease of migration
It is easy to get started with serverless applications by porting individual features and operate them as on-demand events. For example, in a CMS, a video plugin requires transcoding video for different formats and bitrates. If the organization wished to do this with a WordPress server, it might not be a good fit as it would require resources dedicated to serving pages rather than encoding the video.

Moreover, the benefits of serverless applications can be used optimally to handle metadata encoding and creation. Similarly, serverless apps can be used in other plugins that are often prone to critical vulnerabilities.

Cons of serverless applications
Despite having some clear benefits, serverless applications are not specific for every single use case. We have listed the top things that an organization should keep in mind while opting for serverless applications.

🔹 Complete dependence on third-party vendor
In the realm of serverless applications, the third-party vendor is the king, and the organizations have no options but to play according to their rules. For example, if an application is set in Lambda, it is not easy to port it into Azure. The same is the case for coding languages. In present times, only Python developers and Node.js developers have the luxury to choose between existing serverless options.

Therefore, if you are planning to consider serverless applications for your next project, make sure that your vendor has everything needed to complete the project.

🔹 Challenges in debugging with traditional tools
It isn’t easy to perform debugging, especially for large enterprise applications that include various individual functions. Serverless applications use traditional tools and thus provide no option to attach a debugger in the public cloud. The organization can either do the debugging process locally or use logging for the same purpose. In addition to this, the DevOps tools in the serverless application do not support the idea of quickly deploying small bits of codes into running applications.

#serverless-application #serverless #serverless-computing #serverless-architeture #serverless-application-prosand-cons