Kubernetes Deprecating Docker?! Let Me Explain Containers in K8s

This article was originally published on the VMBlog here and adapted for Medium.

When you think of Kubernetes you think of containers. When you think of containers you think Docker. So it was a big surprise when, in December 2020, the Kubernetes maintainers announced that it would be deprecating Docker support for Kubernetes v1.20+. This caused quite a bit of concern and confusion.

Deprecating Docker support in Kubernetes? This sounded like a very topical piece of information in 2020. While the term Docker is synonymous with containers, many do not realize that as a product, Docker is composed of multiple components and is a tech stack for containers.

One of these components is the container runtime, which is what Kubernetes needs in order to interact with your containers. The container runtime can be broken down into a high-level runtime and a low-level runtime. Both of which serve different purposes but work together. The high-level runtime focuses on things such as pulling images from registries, managing the image, and handing the images to the low-level runtime. The low-level runtime will then create, delete, and run containers off of the images provided. The high-level and low-level runtimes follow specification specifications — Container Runtime Interface (CRI) and Open Container Initiative respectively.

#software-development #containers #kubernetes #cloud-computing #docker

What is GEEK

Buddha Community

Kubernetes Deprecating Docker?! Let Me Explain Containers in K8s
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Kubernetes Deprecating Docker?! Let Me Explain Containers in K8s

This article was originally published on the VMBlog here and adapted for Medium.

When you think of Kubernetes you think of containers. When you think of containers you think Docker. So it was a big surprise when, in December 2020, the Kubernetes maintainers announced that it would be deprecating Docker support for Kubernetes v1.20+. This caused quite a bit of concern and confusion.

Deprecating Docker support in Kubernetes? This sounded like a very topical piece of information in 2020. While the term Docker is synonymous with containers, many do not realize that as a product, Docker is composed of multiple components and is a tech stack for containers.

One of these components is the container runtime, which is what Kubernetes needs in order to interact with your containers. The container runtime can be broken down into a high-level runtime and a low-level runtime. Both of which serve different purposes but work together. The high-level runtime focuses on things such as pulling images from registries, managing the image, and handing the images to the low-level runtime. The low-level runtime will then create, delete, and run containers off of the images provided. The high-level and low-level runtimes follow specification specifications — Container Runtime Interface (CRI) and Open Container Initiative respectively.

#software-development #containers #kubernetes #cloud-computing #docker

Paris  Turcotte

Paris Turcotte

1617930420

Master K8s for the Docker Certified Associate exam

Yep, you read it right…the Docker Certified Associate (DCA) certification has changed so much recently that the majority of the exam is now about Kubernetes.

I just got certified, and I’d confidently say that almost half of the questions were Kubernetes related!

Reelaaax, I passed anyway 😎

But, given that all exams are different, was I just “unlucky”? Or is this where the DCA is heading towards?

There’s plenty of material online for those preparing to take this exam, so I’ll just share my experience and hopefully shed some light on how to study for it.

Signs of change?

You might question whether I am exaggerating or not…and that’s fine. But let’s have a look at some evidence pointing towards this shift to Kubernetes:

  • **DCA Study Guide: **have a look at the latest study guide. There are 5 mentions of Kubernetes topics to be studied, and 2 sample questions (out of 9). Now have a look at the study guide from March 2020, and you’ll see 0 sample questions about Kubernetes. Finally, down the memory lane, you’ll find version 1.0 of the study guide (from 2017), where Kubernetes is not mentioned at all!
  • The News: more and more we are getting bombarded with opinions, articles and sometimes even official statements (like this one) about the overwhelming preference Kubernetes is taking over Docker. So it’s no surprise to see Docker and Mirantis moving with the flow, trying to accommodate the best of both worlds.
  • **Docker EE Stack Renamed: **yes folks. If you haven’t visited Mirantis’ docs lately, please do:
    • Universal Control Plane is now called Mirantis Kubernetes Engine;
    • Docker Trusted Registry is now called Mirantis Secure Registry;
    • Docker Engine Enterprise is now called Mirantis Container Runtime.
  • NOTE: my exam, Dec. 2020, still had the old terminology (UCP, DTR, etc.)

#containers #kubernetes #docker-certification #k8s #docker

Iliana  Welch

Iliana Welch

1595249460

Docker Explained: Docker Architecture | Docker Registries

Following the second video about Docker basics, in this video, I explain Docker architecture and explain the different building blocks of the docker engine; docker client, API, Docker Daemon. I also explain what a docker registry is and I finish the video with a demo explaining and illustrating how to use Docker hub

In this video lesson you will learn:

  • What is Docker Host
  • What is Docker Engine
  • Learn about Docker Architecture
  • Learn about Docker client and Docker Daemon
  • Docker Hub and Registries
  • Simple demo to understand using images from registries

#docker #docker hub #docker host #docker engine #docker architecture #api

Maud  Rosenbaum

Maud Rosenbaum

1601051854

Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.

Stability

In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud