Sean Robertson

Sean Robertson


TensorFlow 2.0 Full Tutorial - Python Neural Networks for Beginners

TensorFlow 2.0 Full Tutorial - Python Neural Networks for Beginners

Learn how to use TensorFlow 2.0 in this full course for beginners.

This course will demonstrate how to create neural networks with Python and TensorFlow 2.0.

⭐️ Course Contents ⭐️

⌨️ (0:00:00) What is a Neural Network?
⌨️ (0:26:34) Loading & Looking at Data
⌨️ (0:39:38) Creating a Model
⌨️ (0:56:48) Using the Model to Make Predictions
⌨️ (1:07:11) Text Classification P1
⌨️ (1:28:37) What is an Embedding Layer? Text Classification P2
⌨️ (1:42:30) Training the Model - Text Classification P3
⌨️ (1:52:35) Saving & Loading Models - Text Classification P4
⌨️ (2:07:09) How to Install TensorFlow GPU on Linux

#tensorflow #python #machine-learning #deep-learning #data-science

What is GEEK

Buddha Community

TensorFlow 2.0 Full Tutorial - Python Neural Networks for Beginners
Ray  Patel

Ray Patel


top 30 Python Tips and Tricks for Beginners

Welcome to my Blog , In this article, you are going to learn the top 10 python tips and tricks.

1) swap two numbers.

2) Reversing a string in Python.

3) Create a single string from all the elements in list.

4) Chaining Of Comparison Operators.

5) Print The File Path Of Imported Modules.

6) Return Multiple Values From Functions.

7) Find The Most Frequent Value In A List.

8) Check The Memory Usage Of An Object.

#python #python hacks tricks #python learning tips #python programming tricks #python tips #python tips and tricks #python tips and tricks advanced #python tips and tricks for beginners #python tips tricks and techniques #python tutorial #tips and tricks in python #tips to learn python #top 30 python tips and tricks for beginners

최 호민

최 호민


파이썬 코딩 무료 강의 - 이미지 처리, 얼굴 인식을 통한 캐릭터 씌우기를 해보아요

파이썬 코딩 무료 강의 (활용편6) - 이미지 처리, 얼굴 인식을 통한 캐릭터 씌우기를 해보아요

파이썬 무료 강의 (활용편6 - 이미지 처리)입니다.
OpenCV 를 이용한 다양한 이미지 처리 기법과 재미있는 프로젝트를 진행합니다.
누구나 볼 수 있도록 쉽고 재미있게 제작하였습니다. ^^

(0:00:00) 0.Intro
(0:00:31) 1.소개
(0:02:18) 2.활용편 6 이미지 처리 소개

[OpenCV 전반전]
(0:04:36) 3.환경설정
(0:08:41) 4.이미지 출력
(0:21:51) 5.동영상 출력 #1 파일
(0:29:58) 6.동영상 출력 #2 카메라
(0:34:23) 7.도형 그리기 #1 빈 스케치북
(0:39:49) 8.도형 그리기 #2 영역 색칠
(0:42:26) 9.도형 그리기 #3 직선
(0:51:23) 10.도형 그리기 #4 원
(0:55:09) 11.도형 그리기 #5 사각형
(0:58:32) 12.도형 그리기 #6 다각형
(1:09:23) 13.텍스트 #1 기본
(1:17:45) 14.텍스트 #2 한글 우회
(1:24:14) 15.파일 저장 #1 이미지
(1:29:27) 16.파일 저장 #2 동영상
(1:39:29) 17.크기 조정
(1:50:16) 18.이미지 자르기
(1:57:03) 19.이미지 대칭
(2:01:46) 20.이미지 회전
(2:06:07) 21.이미지 변형 - 흑백
(2:11:25) 22.이미지 변형 - 흐림
(2:18:03) 23.이미지 변형 - 원근 #1
(2:27:45) 24.이미지 변형 - 원근 #2

[반자동 문서 스캐너 프로젝트]
(2:32:50) 25.미니 프로젝트 1 - #1 마우스 이벤트 등록
(2:42:06) 26.미니 프로젝트 1 - #2 기본 코드 완성
(2:49:54) 27.미니 프로젝트 1 - #3 지점 선 긋기
(2:55:24) 28.미니 프로젝트 1 - #4 실시간 선 긋기

[OpenCV 후반전]
(3:01:52) 29.이미지 변형 - 이진화 #1 Trackbar
(3:14:37) 30.이미지 변형 - 이진화 #2 임계값
(3:20:26) 31.이미지 변형 - 이진화 #3 Adaptive Threshold
(3:28:34) 32.이미지 변형 - 이진화 #4 오츠 알고리즘
(3:32:22) 33.이미지 변환 - 팽창
(3:41:10) 34.이미지 변환 - 침식
(3:45:56) 35.이미지 변환 - 열림 & 닫힘
(3:54:10) 36.이미지 검출 - 경계선
(4:05:08) 37.이미지 검출 - 윤곽선 #1 기본
(4:15:26) 38.이미지 검출 - 윤곽선 #2 찾기 모드
(4:20:46) 39.이미지 검출 - 윤곽선 #3 면적

[카드 검출 & 분류기 프로젝트]
(4:27:42) 40.미니프로젝트 2

(4:31:57) 41.퀴즈

[얼굴인식 프로젝트]
(4:41:25) 42.환경설정 및 기본 코드 정리
(4:54:48) 43.눈과 코 인식하여 도형 그리기
(5:10:42) 44.그림판 이미지 씌우기
(5:20:52) 45.캐릭터 이미지 씌우기
(5:33:10) 46.보충설명
(5:40:53) 47.마치며 (학습 참고 자료)
(5:42:18) 48.Outro

수업에 필요한 이미지, 동영상 자료 링크입니다.

고양이 이미지 : 
크기 : 640 x 390  
파일명 : img.jpg

고양이 동영상 : 
크기 : SD (360 x 640)  
파일명 : video.mp4

신문 이미지 : 
크기 : 1280 x 853  
파일명 : newspaper.jpg

카드 이미지 1 : 
크기 : 1280 x 1019  
파일명 : poker.jpg

책 이미지 : 
크기 : Small (640 x 853)  
파일명 : book.jpg

눈사람 이미지 : 
크기 : 1280 x 904  
파일명 : snowman.png

카드 이미지 2 : 
크기 : 640 x 408  
파일명 : card.png

퀴즈용 동영상 : 
크기 : HD (1280 x 720)  
파일명 : city.mp4

프로젝트용 동영상 : 
크기 : Full HD (1920 x 1080)  
파일명 : face_video.mp4

프로젝트용 캐릭터 이미지 :  
파일명 : right_eye.png (100 x 100), left_eye.png (100 x 100), nose.png (300 x 100)

무료 이미지 편집 도구 :
(Pixlr E -Advanced Editor)

#python #opencv 

Sival Alethea

Sival Alethea


Learn Python - Full Course for Beginners [Tutorial]

This course will give you a full introduction into all of the core concepts in python. Follow along with the videos and you’ll be a python programmer in no time!
⭐️ Contents ⭐
⌨️ (0:00) Introduction
⌨️ (1:45) Installing Python & PyCharm
⌨️ (6:40) Setup & Hello World
⌨️ (10:23) Drawing a Shape
⌨️ (15:06) Variables & Data Types
⌨️ (27:03) Working With Strings
⌨️ (38:18) Working With Numbers
⌨️ (48:26) Getting Input From Users
⌨️ (52:37) Building a Basic Calculator
⌨️ (58:27) Mad Libs Game
⌨️ (1:03:10) Lists
⌨️ (1:10:44) List Functions
⌨️ (1:18:57) Tuples
⌨️ (1:24:15) Functions
⌨️ (1:34:11) Return Statement
⌨️ (1:40:06) If Statements
⌨️ (1:54:07) If Statements & Comparisons
⌨️ (2:00:37) Building a better Calculator
⌨️ (2:07:17) Dictionaries
⌨️ (2:14:13) While Loop
⌨️ (2:20:21) Building a Guessing Game
⌨️ (2:32:44) For Loops
⌨️ (2:41:20) Exponent Function
⌨️ (2:47:13) 2D Lists & Nested Loops
⌨️ (2:52:41) Building a Translator
⌨️ (3:00:18) Comments
⌨️ (3:04:17) Try / Except
⌨️ (3:12:41) Reading Files
⌨️ (3:21:26) Writing to Files
⌨️ (3:28:13) Modules & Pip
⌨️ (3:43:56) Classes & Objects
⌨️ (3:57:37) Building a Multiple Choice Quiz
⌨️ (4:08:28) Object Functions
⌨️ (4:12:37) Inheritance
⌨️ (4:20:43) Python Interpreter
📺 The video in this post was made by
The origin of the article:

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#python #learn python #learn python for beginners #learn python - full course for beginners [tutorial] #python programmer #concepts in python

Semantic Similarity Framework for Knowledge Graph


Sematch is an integrated framework for the development, evaluation, and application of semantic similarity for Knowledge Graphs (KGs). It is easy to use Sematch to compute semantic similarity scores of concepts, words and entities. Sematch focuses on specific knowledge-based semantic similarity metrics that rely on structural knowledge in taxonomy (e.g. depth, path length, least common subsumer), and statistical information contents (corpus-IC and graph-IC). Knowledge-based approaches differ from their counterpart corpus-based approaches relying on co-occurrence (e.g. Pointwise Mutual Information) or distributional similarity (Latent Semantic Analysis, Word2Vec, GLOVE and etc). Knowledge-based approaches are usually used for structural KGs, while corpus-based approaches are normally applied in textual corpora.

In text analysis applications, a common pipeline is adopted in using semantic similarity from concept level, to word and sentence level. For example, word similarity is first computed based on similarity scores of WordNet concepts, and sentence similarity is computed by composing word similarity scores. Finally, document similarity could be computed by identifying important sentences, e.g. TextRank.


KG based applications also meet similar pipeline in using semantic similarity, from concept similarity (e.g. to entity similarity (e.g. Furthermore, in computing document similarity, entities are extracted and document similarity is computed by composing entity similarity scores.


In KGs, concepts usually denote ontology classes while entities refer to ontology instances. Moreover, those concepts are usually constructed into hierarchical taxonomies, such as DBpedia ontology class, thus quantifying concept similarity in KG relies on similar semantic information (e.g. path length, depth, least common subsumer, information content) and semantic similarity metrics (e.g. Path, Wu & Palmer,Li, Resnik, Lin, Jiang & Conrad and WPath). In consequence, Sematch provides an integrated framework to develop and evaluate semantic similarity metrics for concepts, words, entities and their applications.

Getting started: 20 minutes to Sematch

Install Sematch

You need to install scientific computing libraries numpy and scipy first. An example of installing them with pip is shown below.

pip install numpy scipy

Depending on different OS, you can use different ways to install them. After sucessful installation of numpy and scipy, you can install sematch with following commands.

pip install sematch
python -m

Alternatively, you can use the development version to clone and install Sematch with setuptools. We recommend you to update your pip and setuptools.

git clone
cd sematch
python install

We also provide a Sematch-Demo Server. You can use it for experimenting with main functionalities or take it as an example for using Sematch to develop applications. Please check our Documentation for more details.

Computing Word Similarity

The core module of Sematch is measuring semantic similarity between concepts that are represented as concept taxonomies. Word similarity is computed based on the maximum semantic similarity of WordNet concepts. You can use Sematch to compute multi-lingual word similarity based on WordNet with various of semantic similarity metrics.

from sematch.semantic.similarity import WordNetSimilarity
wns = WordNetSimilarity()

# Computing English word similarity using Li method
wns.word_similarity('dog', 'cat', 'li') # 0.449327301063
# Computing Spanish word similarity using Lin method
wns.monol_word_similarity('perro', 'gato', 'spa', 'lin') #0.876800984373
# Computing Chinese word similarity using  Wu & Palmer method
wns.monol_word_similarity('狗', '猫', 'cmn', 'wup') # 0.857142857143
# Computing Spanish and English word similarity using Resnik method
wns.crossl_word_similarity('perro', 'cat', 'spa', 'eng', 'res') #7.91166650904
# Computing Spanish and Chinese word similarity using Jiang & Conrad method
wns.crossl_word_similarity('perro', '猫', 'spa', 'cmn', 'jcn') #0.31023804699
# Computing Chinese and English word similarity using WPath method
wns.crossl_word_similarity('狗', 'cat', 'cmn', 'eng', 'wpath')#0.593666388463

Computing semantic similarity of YAGO concepts.

from sematch.semantic.similarity import YagoTypeSimilarity
sim = YagoTypeSimilarity()

#Measuring YAGO concept similarity through WordNet taxonomy and corpus based information content
sim.yago_similarity('','', 'wpath') #0.642
sim.yago_similarity('','', 'wpath') #0.544
#Measuring YAGO concept similarity based on graph-based IC
sim.yago_similarity('','', 'wpath_graph') #0.423
sim.yago_similarity('','', 'wpath_graph') #0.328

Computing semantic similarity of DBpedia concepts.

from sematch.semantic.graph import DBpediaDataTransform, Taxonomy
from sematch.semantic.similarity import ConceptSimilarity
concept = ConceptSimilarity(Taxonomy(DBpediaDataTransform()),'models/dbpedia_type_ic.txt')
concept.similarity('','', 'path')
concept.similarity('','', 'wup')
concept.similarity('','', 'li')
concept.similarity('','', 'res')
concept.similarity('','', 'lin')
concept.similarity('','', 'jcn')
concept.similarity('','', 'wpath')

Computing semantic similarity of DBpedia entities.

from sematch.semantic.similarity import EntitySimilarity
sim = EntitySimilarity()
sim.similarity('','') #0.409923677282

Evaluate semantic similarity metrics with word similarity datasets

from sematch.evaluation import WordSimEvaluation
from sematch.semantic.similarity import WordNetSimilarity
evaluation = WordSimEvaluation()
wns = WordNetSimilarity()
# define similarity metrics
wpath = lambda x, y: wns.word_similarity_wpath(x, y, 0.8)
# evaluate similarity metrics with SimLex dataset
evaluation.evaluate_metric('wpath', wpath, 'noun_simlex')
# performa Steiger's Z significance Test
evaluation.statistical_test('wpath', 'path', 'noun_simlex')
# define similarity metrics for Spanish words
wpath_es = lambda x, y: wns.monol_word_similarity(x, y, 'spa', 'path')
# define cross-lingual similarity metrics for English-Spanish
wpath_en_es = lambda x, y: wns.crossl_word_similarity(x, y, 'eng', 'spa', 'wpath')
# evaluate metrics in multilingual word similarity datasets
evaluation.evaluate_metric('wpath_es', wpath_es, 'rg65_spanish')
evaluation.evaluate_metric('wpath_en_es', wpath_en_es, 'rg65_EN-ES')

Evaluate semantic similarity metrics with category classification

Although the word similarity correlation measure is the standard way to evaluate the semantic similarity metrics, it relies on human judgements over word pairs which may not have same performance in real applications. Therefore, apart from word similarity evaluation, the Sematch evaluation framework also includes a simple aspect category classification. The task classifies noun concepts such as pasta, noodle, steak, tea into their ontological parent concept FOOD, DRINKS.

from sematch.evaluation import AspectEvaluation
from sematch.application import SimClassifier, SimSVMClassifier
from sematch.semantic.similarity import WordNetSimilarity

# create aspect classification evaluation
evaluation = AspectEvaluation()
# load the dataset
X, y = evaluation.load_dataset()
# define word similarity function
wns = WordNetSimilarity()
word_sim = lambda x, y: wns.word_similarity(x, y)
# Train and evaluate metrics with unsupervised classification model
simclassifier = SimClassifier.train(zip(X,y), word_sim)
evaluation.evaluate(X,y, simclassifier)

macro averge:  (0.65319812882333839, 0.7101245049198579, 0.66317566364913016, None)
micro average:  (0.79210167952791644, 0.79210167952791644, 0.79210167952791644, None)
weighted average:  (0.80842645056024054, 0.79210167952791644, 0.79639496616636352, None)
accuracy:  0.792101679528
             precision    recall  f1-score   support

    SERVICE       0.50      0.43      0.46       519
 RESTAURANT       0.81      0.66      0.73       228
       FOOD       0.95      0.87      0.91      2256
   LOCATION       0.26      0.67      0.37        54
   AMBIENCE       0.60      0.70      0.65       597
     DRINKS       0.81      0.93      0.87       752

avg / total       0.81      0.79      0.80      4406

Matching Entities with type using SPARQL queries

You can use Sematch to download a list of entities having a specific type using different languages. Sematch will generate SPARQL queries and execute them in DBpedia Sparql Endpoint.

from sematch.application import Matcher
matcher = Matcher()
# matching scientist entities from DBpedia
matcher.match_type('científico', 'spa')
matcher.match_type('科学家', 'cmn')
matcher.match_entity_type('movies with Tom Cruise')

Example of automatically generated SPARQL query.

SELECT DISTINCT ?s, ?label, ?abstract WHERE {
    ?s <> <> . }
 UNION {  
    ?s <> <> . }
 UNION {  
    ?s <> <> . }
 UNION {  
    ?s <> <> . }
 UNION {  
    ?s <> <> . } 
    ?s <> <> . 
    ?s <> ?label . 
    FILTER( lang(?label) = "en") . 
    ?s <> ?abstract . 
    FILTER( lang(?abstract) = "en") .
} LIMIT 5000

Entity feature extraction with Similarity Graph

Apart from semantic matching of entities from DBpedia, you can also use Sematch to extract features of entities and apply semantic similarity analysis using graph-based ranking algorithms. Given a list of objects (concepts, words, entities), Sematch compute their pairwise semantic similarity and generate similarity graph where nodes denote objects and edges denote similarity scores. An example of using similarity graph for extracting important words from an entity description.

from sematch.semantic.graph import SimGraph
from sematch.semantic.similarity import WordNetSimilarity
from sematch.nlp import Extraction, word_process
from sematch.semantic.sparql import EntityFeatures
from collections import Counter
tom = EntityFeatures().features('')
words = Extraction().extract_nouns(tom['abstract'])
words = word_process(words)
wns = WordNetSimilarity()
word_graph = SimGraph(words, wns.word_similarity)
word_scores = word_graph.page_rank()
words, scores =zip(*Counter(word_scores).most_common(10))
print words
(u'picture', u'action', u'number', u'film', u'post', u'sport', 
u'program', u'men', u'performance', u'motion')


Ganggao Zhu, and Carlos A. Iglesias. "Computing Semantic Similarity of Concepts in Knowledge Graphs." IEEE Transactions on Knowledge and Data Engineering 29.1 (2017): 72-85.

Oscar Araque, Ganggao Zhu, Manuel Garcia-Amado and Carlos A. Iglesias Mining the Opinionated Web: Classification and Detection of Aspect Contexts for Aspect Based Sentiment Analysis, ICDM sentire, 2016.

Ganggao Zhu, and Carlos Angel Iglesias. "Sematch: Semantic Entity Search from Knowledge Graph." SumPre-HSWI@ ESWC. 2015.


You can post bug reports and feature requests in Github issues. Make sure to read our guidelines first. This project is still under active development approaching to its goals. The project is mainly maintained by Ganggao Zhu. You can contact him via gzhu [at]

Why this name, Sematch and Logo?

The name of Sematch is composed based on Spanish "se" and English "match". It is also the abbreviation of semantic matching because semantic similarity metrics helps to determine semantic distance of concepts, words, entities, instead of exact matching.

The logo of Sematch is based on Chinese Yin and Yang which is written in I Ching. Somehow, it correlates to 0 and 1 in computer science.

Author: Gsi-upm
Source Code: 
License: View license

#python #jupyternotebook #graph 

Ray  Patel

Ray Patel


Lambda, Map, Filter functions in python

Welcome to my Blog, In this article, we will learn python lambda function, Map function, and filter function.

Lambda function in python: Lambda is a one line anonymous function and lambda takes any number of arguments but can only have one expression and python lambda syntax is

Syntax: x = lambda arguments : expression

Now i will show you some python lambda function examples:

#python #anonymous function python #filter function in python #lambda #lambda python 3 #map python #python filter #python filter lambda #python lambda #python lambda examples #python map