Functional JS with ES6 — Church Booleans, Conditionals, and Operators

Functional JS with ES6 — Church Booleans, Conditionals, and Operators

In my last&nbsp;<a href="https://medium.com/dailyjs/functional-js-with-es6-recursive-patterns-b7d0813ef9e3" target="_blank">Functional JS article</a>, we went over recursive patterns that allow you to operate/iterate over array values. This time, we’re going to get a bit more abstract to hopefully explain some of the bare fundamentals of functional programming.

I’ll start this article with a warning, I mention the use of Lambda Calculus, but do not let that scare you! I promise, no knowledge of λ-Calculus is required to understand or use the main concepts in this article! Phew!

In my last Functional JS article, we went over recursive patterns that allow you to operate/iterate over array values. This time, we’re going to get a bit more abstract to hopefully explain some of the bare fundamentals of functional programming.

A moment on Currying

You’ll notice that we never define a function with more than 1 argument. We return a new function for every additional argument needed. This is a technique used very commonly in functional programming that has its roots in Lambda Calculus. This has multiple benefits, but is used mainly to simplify partial application of functions.


What are we doing?

Glad you asked! We’re going to re-create: true, false, ||(or), &&(and), !(not), ==(equals), and !=(not equals). As a bonus, we’re going to use some magical Lambda Calculus to make our functions much more efficient!


Let’s get started!

The first functions we need to define are our booleans: true and false. How we define these functions makes more sense once they’re used with the conditional function we soon define. The way we represent booleans as functions is a concept known as Church Booleans.


TRUE (true):

No, I’m not trying to yell, I’m using this naming convention because true in all lowercase is a reserved word and can’t be used to name our function. This function takes two arguments and will always return the first argument. In comparison, the FALSE function does the same, but always returns the second argument. These functions are also known as selectFirst and selectSecondin other languages.

const TRUE = (x) => (y) => x

TRUE('foo')('bar') // => 'foo' TRUE(10)(5) // => 10

FALSE (false):

Almost identical to the TRUE function, but returns the second argument rather than the first.

const FALSE = (x) => (y) => y

FALSE('foo')('bar') // => 'bar' FALSE(10)(5) // => 5

Conditional (cond):

The next function we need to define is our function that will handle conditional logic. Normally we’d use an if/else statement or a ternary to do this, but we want everything to be a function. It’s functions all the way down, this comes in handy later on.


If you break down a conditional in JavaScript, you end up with 3 parts:

  1. Conditional Statement
  2. Expression when true
  3. Expression when false

To mimic this, we will create a function that takes 3 arguments and returns the conditional function with both expressions applied. If you notice, I place the conditional last rather than first. This is a functional programming convention that helps when creating partially applied functions.

If you remember how we defined our booleans, they are both functions that when called with 2 arguments, return one of these arguments. This is exactly how our conditional function is going to work. The conditional function (TRUE or FALSE) passed in is called with 2 arguments, our expressions when true and false.


const cond = (isTrue) => (isFalse) => (conditional) =>
  conditional(isTrue)(isFalse)

// use partial application to store the first two arguments and return a function ready to accept the last const trueOrFalse = cond('This is true.')('This is false.') trueOrFalse(TRUE) // => 'This is true.' trueOrFalse(FALSE) // => 'This is false.'

// The follow will not work, we must use the defined TRUE and FALSE functions trueOrFalse(true) // => TypeError: conditional is not a function trueOrFalse(false) // => TypeError: conditional is not a function

Not (!)

This is the first logical operator we will define. It takes a single argument: x. If x is TRUE it returns FALSE, if x is FALSE it returns TRUE. We make use of the previously defined cond function to handle the conditional logic. Within the conditional: if x is TRUE we return FALSE otherwise we return TRUE .


const not = (x) => cond(FALSE)(TRUE)(x)

not(FALSE) // => TRUE not(TRUE) // => FALSE cond('Foo')('Bar')(not(TRUE)) // => 'Bar'

Or (||)

This is the first logical operator we will define. It takes 2 arguments: x and y. If either x or y is TRUE, we will return TRUE, otherwise we return FALSE. Again, we use the cond function to handle this. Within the conditional: if x is TRUE we return TRUE otherwise we return y .

const or = (x) => (y) => cond(TRUE)(y)(x)

or(TRUE)(FALSE) // => TRUE or(FALSE)(FALSE) // => FALSE or(FALSE)(TRUE) // => TRUE or(TRUE)(TRUE) // => TRUE

And (&&)

This function takes 2 arguments: x and y. Both x and y must be TRUE for this to return TRUE, otherwise it will return FALSE. We make use of the condfunction again, not much is different. Within the conditional: if x is TRUE we return y otherwise we return FALSE.

const and = (x) => (y) => cond(y)(FALSE)(x)

and(TRUE)(FALSE) // => FALSE and(FALSE)(TRUE) // => FALSE and(FALSE)(FALSE) // => FALSE and(TRUE)(TRUE) // => TRUE

Equal (==)

This function takes 2 arguments: x and y. Both x and y must be the same value for this to return TRUE otherwise it returns FALSE. We need to use the cond function and the not function to handle this one! Within the conditional: if x is TRUE we return y otherwise we return not(y)to only return TRUE when y is also FALSE.

const equal = (x) => (y) => cond(y)(not(y))(x)

equal(TRUE)(FALSE) // => FALSE equal(FALSE)(TRUE) // => FALSE equal(FALSE)(FALSE) // => TRUE equal(TRUE)(TRUE) // => TRUE

Not Equal (!=)

This function takes 2 arguments: x and y. x and y must not be the same value for this to return TRUE, otherwise FALSE is returned.

const notEqual = (x) => (y) => cond(not(y))(y)(x)

notEqual(TRUE)(FALSE) // => TRUE notEqual(FALSE)(TRUE) // => TRUE notEqual(FALSE)(FALSE) // => FALSE notEqual(TRUE)(TRUE) // => FALSE

EXTRA: β (Beta) Reductions through λ-Calculus

Disclaimer: do not feel the need to understand this at all as it is not a requirement to understand and use functional concepts. However, I think it’s an interesting topic to learn about and helps demonstrate the power of functional programming through math. I will gloss over topics as I am not the best resource to learn λ-Calculus, it is not the focus of this article, just an added bonus. These optimizations are handled automatically with most statically compiled functional languages.

And (&&) Reduction

In the following example, we use β reduction to remove the use of our condfunction entirely from our and function. Our and function is now composed entirely with booleans and is mathematically equivalent!

// original and function
const _and = (x) => (y) => cond(y)(FALSE)(x)

// this function can also be written as: // λx.λy.cond y FALSE x

// it uses cond internally which can be written as: // cond = λe1.λe2.λc.c e1 e2

// let's grab the function body and start reducing

// cond y FALSE x // expand cond function // (λe1.λe2.λc.c e1 e2) y FALSE x // (λe2.λc.c y e2) FALSE x // (λc.c y FALSE) x // x y FALSE

// which results in: const and = (x) => (y) => x(y)(FALSE)

Or (||) Reduction

Again, we use reduction to remove the use of our cond function entirely from our or function. Like before, our or function is now composed entirely with booleans and is mathematically equivalent.

// original and function
const _or = (x) => (y) => cond(TRUE)(y)(x)

// this function can also be written as: // λx.λy.cond TRUE y x

// it uses cond internally which can be written as: // cond = λe1.λe2.λc.c e1 e2

// let's grab the function body and start reducing

// cond TRUE y x // expand cond function // (λe1.λe2.λc.c e1 e2) TRUE y x // (λe2.λc.c TRUE e2) y x // (λc.c TRUE y) x // x TRUE y

// which results in: const or = (x) => (y) => x(TRUE)(y)

Equal (==) Reduction

Just like before, we use reduction to remove the use of our cond function entirely from our equal function. Our equal function is now composed entirely with booleans and is mathematically equivalent.

// original and function
const _equal = (x) => (y) => cond(y)(not(y))(x)

// this function can also be written as: // λx.λy.cond y (not y) x

// it uses cond internally which can be written as: // cond = λe1.λe2.λc.c e1 e2

// it uses not internally which can be written as: // not = λx.cond FALSE TRUE x

// let's grab the function body and start reducing

// cond y (not y) x // expand cond function // λx.λy.(λe1.λe2.λc.c e1 e2) y (not y) x // (λe1.λe2.λc.c e1 e2) y (not y) x // (λe2.λc.c y e2)(not y) x // (λc.c y (not y)) x // (x y (not y)) // expand not function // (x y (cond FALSE TRUE y)) // expand cond function // (x y ((λe1.λe2.λc.c e1 e2) FALSE TRUE y)) // (x y ((λe2.λc.c FALSE e2) TRUE y)) // (x y ((λc.c FALSE TRUE) y)) // (x y (y FALSE TRUE))

// which results in: const equal = (x) => (y) => x(y)(y(FALSE)(TRUE))

Not Equal(!=) Reduction

For the last time, we remove the use of our cond function entirely from our notEqual function. Our notEqual function is now composed entirely with booleans and is mathematically equivalent.

// original and function
const _notEqual = (x) => (y) => cond(not(y))(y)(x)

// this function can also be written as: // λx.λy.cond y (not y) x

// it uses cond internally which can be written as: // cond = λe1.λe2.λc.c e1 e2

// it uses not internally which can be written as: // not = λx.cond FALSE TRUE x

// let's grab the function body and start reducing

// cond (not y) y x // expand cond function // (λe1.λe2.λc.c e1 e2) (not y) y x // (λe2.λc.c (not y) e2) y x // (λc.c (not y) y) x // x (not y) y // expand not function // x ((λx.cond FALSE TRUE x) y) y // x (cond FALSE TRUE y) y // expand cond function // x ((λe1.λe2.λc.c e1 e2) FALSE TRUE y) y // x ((λe2.λc.c FALSE e2) TRUE y) y // x ((λc.c FALSE TRUE) y) y // x (y FALSE TRUE) y

// which results in: const notEqual = (x) => (y) => x(y(FALSE)(TRUE))(y)

Wrapping Up

I hope this helped demonstrate the power and flexibility of functions. This logic can be shared and re-written in any language that has first-class functions!


The functions and concepts used in the article will be expanded in a later article where we use Church numerals to represent natural numbers as pure functions. We will even implement arithmetic and comparison operators for these numbers!


By :Casey Morris








Angular 9 Tutorial: Learn to Build a CRUD Angular App Quickly

What's new in Bootstrap 5 and when Bootstrap 5 release date?

Brave, Chrome, Firefox, Opera or Edge: Which is Better and Faster?

How to Build Progressive Web Apps (PWA) using Angular 9

What is new features in Javascript ES2020 ECMAScript 2020

JavaScript Tutorial: if-else Statement in JavaScript

This JavaScript tutorial is a step by step guide on JavaScript If Else Statements. Learn how to use If Else in javascript and also JavaScript If Else Statements. if-else Statement in JavaScript. JavaScript's conditional statements: if; if-else; nested-if; if-else-if. These statements allow you to control the flow of your program's execution based upon conditions known only during run time.

How to Retrieve full Profile of LinkedIn User using Javascript

I am trying to retrieve the full profile (especially job history and educational qualifications) of a linkedin user via the Javascript (Fetch LinkedIn Data Using JavaScript)

Java vs. JavaScript: Know The Difference

Java vs. JavaScript: Know the Difference, Java vs. JavaScript: What's the Difference? Java vs. JavaScript: Major Similarities and Differences. pros and cons of JavaScript and Java.