1660641720
Specify various templates for different directories and create them with one click.
Usually there is something in the project directory in a particular format, code snippet, configuration, directory structure, etc... Copying or right-clicking a new file frequently doesn't make us any more productive, so maybe we can make right-clicking easier
.
After Gold-Right is installed and reload VS Code, Gold-Right
is automatically enabled
Specifies the template directory location, which can be specified under workspace configuration or user configuration
# Specify the templates folder in the root directory
{
# Relative to the current workspace path
"goldRight.templateDirectoryPath": "./templates"
"goldRight.templateDirectoryPath": "templates"
# An absolute path
"goldRight.templateDirectoryPath": "/Users/user-name/Gold-Right-example/templates"
}
Create the configuration (config.json) file in the template directory
{
"paths": [
{
"directory": "src/pages",
# Use the components/hooks templates for ”src/pages“
"templates": ["components", "hooks"]
},
{
"directory": "src/hooks",
# Use the hooks template for ”src/hooks“
"templates": ["hooks"]
}
],
"templatesConfig": [
{
# Define the configuration for the Components template
"templateName": "components",
"inputsVariables": [
{
# Define the "[COMPONENT_NAME]" variable, and open the prompt box to enter the variable content
"key": "[COMPONENT_NAME]",
# The title of prompt box.
"title": "Please input component name.",
# If the this field is empty, creation will stop.
"required": true
}
]
},
{
# Define the configuration for the hooks template
"templateName": "hooks",
"inputsVariables": [
{
# Define the "[HOOKS_NAME]" variable, and open the prompt box to enter the variable content
"key": "[HOOKS_NAME]",
# The title of prompt box.
"title": "Please input hooks name."
}
]
}
]
}
Create templates
The directory structure
./templates
├── components
| | # The directory name "[COMPONENT_NAME]" will be replaced with the input.
│ └── [COMPONENT_NAME]
│ ├── index.tsx
│ └── styles.css
├── config.json
└── hooks
|___| # The directory name "[HOOKS_NAME]" will be replaced with the input.
└── [HOOKS_NAME]
└── index.ts
./templates/components/[COMPONENT_NAME]/index.tsx
import React from 'react';
import './styles.css';
export interface [COMPONENT_NAME]Props {
}
export const [COMPONENT_NAME]: React.FC<[COMPONENT_NAME]Props> = props => {
return <div></div>
}
./templates/hooks/[HOOKS_NAME]/index.ts
import React from 'react'
export const [HOOKS_NAME] = () => {
return React.useState()
}
Author: dohooo
Source code: https://github.com/dohooo/Gold-Right
License: MIT license
#react #typescript
1655630160
Install via pip:
$ pip install pytumblr
Install from source:
$ git clone https://github.com/tumblr/pytumblr.git
$ cd pytumblr
$ python setup.py install
A pytumblr.TumblrRestClient
is the object you'll make all of your calls to the Tumblr API through. Creating one is this easy:
client = pytumblr.TumblrRestClient(
'<consumer_key>',
'<consumer_secret>',
'<oauth_token>',
'<oauth_secret>',
)
client.info() # Grabs the current user information
Two easy ways to get your credentials to are:
interactive_console.py
tool (if you already have a consumer key & secret)client.info() # get information about the authenticating user
client.dashboard() # get the dashboard for the authenticating user
client.likes() # get the likes for the authenticating user
client.following() # get the blogs followed by the authenticating user
client.follow('codingjester.tumblr.com') # follow a blog
client.unfollow('codingjester.tumblr.com') # unfollow a blog
client.like(id, reblogkey) # like a post
client.unlike(id, reblogkey) # unlike a post
client.blog_info(blogName) # get information about a blog
client.posts(blogName, **params) # get posts for a blog
client.avatar(blogName) # get the avatar for a blog
client.blog_likes(blogName) # get the likes on a blog
client.followers(blogName) # get the followers of a blog
client.blog_following(blogName) # get the publicly exposed blogs that [blogName] follows
client.queue(blogName) # get the queue for a given blog
client.submission(blogName) # get the submissions for a given blog
Creating posts
PyTumblr lets you create all of the various types that Tumblr supports. When using these types there are a few defaults that are able to be used with any post type.
The default supported types are described below.
We'll show examples throughout of these default examples while showcasing all the specific post types.
Creating a photo post
Creating a photo post supports a bunch of different options plus the described default options * caption - a string, the user supplied caption * link - a string, the "click-through" url for the photo * source - a string, the url for the photo you want to use (use this or the data parameter) * data - a list or string, a list of filepaths or a single file path for multipart file upload
#Creates a photo post using a source URL
client.create_photo(blogName, state="published", tags=["testing", "ok"],
source="https://68.media.tumblr.com/b965fbb2e501610a29d80ffb6fb3e1ad/tumblr_n55vdeTse11rn1906o1_500.jpg")
#Creates a photo post using a local filepath
client.create_photo(blogName, state="queue", tags=["testing", "ok"],
tweet="Woah this is an incredible sweet post [URL]",
data="/Users/johnb/path/to/my/image.jpg")
#Creates a photoset post using several local filepaths
client.create_photo(blogName, state="draft", tags=["jb is cool"], format="markdown",
data=["/Users/johnb/path/to/my/image.jpg", "/Users/johnb/Pictures/kittens.jpg"],
caption="## Mega sweet kittens")
Creating a text post
Creating a text post supports the same options as default and just a two other parameters * title - a string, the optional title for the post. Supports markdown or html * body - a string, the body of the of the post. Supports markdown or html
#Creating a text post
client.create_text(blogName, state="published", slug="testing-text-posts", title="Testing", body="testing1 2 3 4")
Creating a quote post
Creating a quote post supports the same options as default and two other parameter * quote - a string, the full text of the qote. Supports markdown or html * source - a string, the cited source. HTML supported
#Creating a quote post
client.create_quote(blogName, state="queue", quote="I am the Walrus", source="Ringo")
Creating a link post
#Create a link post
client.create_link(blogName, title="I like to search things, you should too.", url="https://duckduckgo.com",
description="Search is pretty cool when a duck does it.")
Creating a chat post
Creating a chat post supports the same options as default and two other parameters * title - a string, the title of the chat post * conversation - a string, the text of the conversation/chat, with diablog labels (no html)
#Create a chat post
chat = """John: Testing can be fun!
Renee: Testing is tedious and so are you.
John: Aw.
"""
client.create_chat(blogName, title="Renee just doesn't understand.", conversation=chat, tags=["renee", "testing"])
Creating an audio post
Creating an audio post allows for all default options and a has 3 other parameters. The only thing to keep in mind while dealing with audio posts is to make sure that you use the external_url parameter or data. You cannot use both at the same time. * caption - a string, the caption for your post * external_url - a string, the url of the site that hosts the audio file * data - a string, the filepath of the audio file you want to upload to Tumblr
#Creating an audio file
client.create_audio(blogName, caption="Rock out.", data="/Users/johnb/Music/my/new/sweet/album.mp3")
#lets use soundcloud!
client.create_audio(blogName, caption="Mega rock out.", external_url="https://soundcloud.com/skrillex/sets/recess")
Creating a video post
Creating a video post allows for all default options and has three other options. Like the other post types, it has some restrictions. You cannot use the embed and data parameters at the same time. * caption - a string, the caption for your post * embed - a string, the HTML embed code for the video * data - a string, the path of the file you want to upload
#Creating an upload from YouTube
client.create_video(blogName, caption="Jon Snow. Mega ridiculous sword.",
embed="http://www.youtube.com/watch?v=40pUYLacrj4")
#Creating a video post from local file
client.create_video(blogName, caption="testing", data="/Users/johnb/testing/ok/blah.mov")
Editing a post
Updating a post requires you knowing what type a post you're updating. You'll be able to supply to the post any of the options given above for updates.
client.edit_post(blogName, id=post_id, type="text", title="Updated")
client.edit_post(blogName, id=post_id, type="photo", data="/Users/johnb/mega/awesome.jpg")
Reblogging a Post
Reblogging a post just requires knowing the post id and the reblog key, which is supplied in the JSON of any post object.
client.reblog(blogName, id=125356, reblog_key="reblog_key")
Deleting a post
Deleting just requires that you own the post and have the post id
client.delete_post(blogName, 123456) # Deletes your post :(
A note on tags: When passing tags, as params, please pass them as a list (not a comma-separated string):
client.create_text(blogName, tags=['hello', 'world'], ...)
Getting notes for a post
In order to get the notes for a post, you need to have the post id and the blog that it is on.
data = client.notes(blogName, id='123456')
The results include a timestamp you can use to make future calls.
data = client.notes(blogName, id='123456', before_timestamp=data["_links"]["next"]["query_params"]["before_timestamp"])
# get posts with a given tag
client.tagged(tag, **params)
This client comes with a nice interactive console to run you through the OAuth process, grab your tokens (and store them for future use).
You'll need pyyaml
installed to run it, but then it's just:
$ python interactive-console.py
and away you go! Tokens are stored in ~/.tumblr
and are also shared by other Tumblr API clients like the Ruby client.
The tests (and coverage reports) are run with nose, like this:
python setup.py test
Author: tumblr
Source Code: https://github.com/tumblr/pytumblr
License: Apache-2.0 license
1669003576
In this Python article, let's learn about Mutable and Immutable in Python.
Mutable is a fancy way of saying that the internal state of the object is changed/mutated. So, the simplest definition is: An object whose internal state can be changed is mutable. On the other hand, immutable doesn’t allow any change in the object once it has been created.
Both of these states are integral to Python data structure. If you want to become more knowledgeable in the entire Python Data Structure, take this free course which covers multiple data structures in Python including tuple data structure which is immutable. You will also receive a certificate on completion which is sure to add value to your portfolio.
Mutable is when something is changeable or has the ability to change. In Python, ‘mutable’ is the ability of objects to change their values. These are often the objects that store a collection of data.
Immutable is the when no change is possible over time. In Python, if the value of an object cannot be changed over time, then it is known as immutable. Once created, the value of these objects is permanent.
Objects of built-in type that are mutable are:
Objects of built-in type that are immutable are:
Object mutability is one of the characteristics that makes Python a dynamically typed language. Though Mutable and Immutable in Python is a very basic concept, it can at times be a little confusing due to the intransitive nature of immutability.
In Python, everything is treated as an object. Every object has these three attributes:
While ID and Type cannot be changed once it’s created, values can be changed for Mutable objects.
Check out this free python certificate course to get started with Python.
I believe, rather than diving deep into the theory aspects of mutable and immutable in Python, a simple code would be the best way to depict what it means in Python. Hence, let us discuss the below code step-by-step:
#Creating a list which contains name of Indian cities
cities = [‘Delhi’, ‘Mumbai’, ‘Kolkata’]
# Printing the elements from the list cities, separated by a comma & space
for city in cities:
print(city, end=’, ’)
Output [1]: Delhi, Mumbai, Kolkata
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(cities)))
Output [2]: 0x1691d7de8c8
#Adding a new city to the list cities
cities.append(‘Chennai’)
#Printing the elements from the list cities, separated by a comma & space
for city in cities:
print(city, end=’, ’)
Output [3]: Delhi, Mumbai, Kolkata, Chennai
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(cities)))
Output [4]: 0x1691d7de8c8
The above example shows us that we were able to change the internal state of the object ‘cities’ by adding one more city ‘Chennai’ to it, yet, the memory address of the object did not change. This confirms that we did not create a new object, rather, the same object was changed or mutated. Hence, we can say that the object which is a type of list with reference variable name ‘cities’ is a MUTABLE OBJECT.
Let us now discuss the term IMMUTABLE. Considering that we understood what mutable stands for, it is obvious that the definition of immutable will have ‘NOT’ included in it. Here is the simplest definition of immutable– An object whose internal state can NOT be changed is IMMUTABLE.
Again, if you try and concentrate on different error messages, you have encountered, thrown by the respective IDE; you use you would be able to identify the immutable objects in Python. For instance, consider the below code & associated error message with it, while trying to change the value of a Tuple at index 0.
#Creating a Tuple with variable name ‘foo’
foo = (1, 2)
#Changing the index[0] value from 1 to 3
foo[0] = 3
TypeError: 'tuple' object does not support item assignment
Once again, a simple code would be the best way to depict what immutable stands for. Hence, let us discuss the below code step-by-step:
#Creating a Tuple which contains English name of weekdays
weekdays = ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’
# Printing the elements of tuple weekdays
print(weekdays)
Output [1]: (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(weekdays)))
Output [2]: 0x1691cc35090
#tuples are immutable, so you cannot add new elements, hence, using merge of tuples with the # + operator to add a new imaginary day in the tuple ‘weekdays’
weekdays += ‘Pythonday’,
#Printing the elements of tuple weekdays
print(weekdays)
Output [3]: (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Pythonday’)
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(weekdays)))
Output [4]: 0x1691cc8ad68
This above example shows that we were able to use the same variable name that is referencing an object which is a type of tuple with seven elements in it. However, the ID or the memory location of the old & new tuple is not the same. We were not able to change the internal state of the object ‘weekdays’. The Python program manager created a new object in the memory address and the variable name ‘weekdays’ started referencing the new object with eight elements in it. Hence, we can say that the object which is a type of tuple with reference variable name ‘weekdays’ is an IMMUTABLE OBJECT.
Also Read: Understanding the Exploratory Data Analysis (EDA) in Python
Where can you use mutable and immutable objects:
Mutable objects can be used where you want to allow for any updates. For example, you have a list of employee names in your organizations, and that needs to be updated every time a new member is hired. You can create a mutable list, and it can be updated easily.
Immutability offers a lot of useful applications to different sensitive tasks we do in a network centred environment where we allow for parallel processing. By creating immutable objects, you seal the values and ensure that no threads can invoke overwrite/update to your data. This is also useful in situations where you would like to write a piece of code that cannot be modified. For example, a debug code that attempts to find the value of an immutable object.
Watch outs: Non transitive nature of Immutability:
OK! Now we do understand what mutable & immutable objects in Python are. Let’s go ahead and discuss the combination of these two and explore the possibilities. Let’s discuss, as to how will it behave if you have an immutable object which contains the mutable object(s)? Or vice versa? Let us again use a code to understand this behaviour–
#creating a tuple (immutable object) which contains 2 lists(mutable) as it’s elements
#The elements (lists) contains the name, age & gender
person = (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])
#printing the tuple
print(person)
Output [1]: (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(person)))
Output [2]: 0x1691ef47f88
#Changing the age for the 1st element. Selecting 1st element of tuple by using indexing [0] then 2nd element of the list by using indexing [1] and assigning a new value for age as 4
person[0][1] = 4
#printing the updated tuple
print(person)
Output [3]: (['Ayaan', 4, 'Male'], ['Aaradhya', 8, 'Female'])
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(person)))
Output [4]: 0x1691ef47f88
In the above code, you can see that the object ‘person’ is immutable since it is a type of tuple. However, it has two lists as it’s elements, and we can change the state of lists (lists being mutable). So, here we did not change the object reference inside the Tuple, but the referenced object was mutated.
Also Read: Real-Time Object Detection Using TensorFlow
Same way, let’s explore how it will behave if you have a mutable object which contains an immutable object? Let us again use a code to understand the behaviour–
#creating a list (mutable object) which contains tuples(immutable) as it’s elements
list1 = [(1, 2, 3), (4, 5, 6)]
#printing the list
print(list1)
Output [1]: [(1, 2, 3), (4, 5, 6)]
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(list1)))
Output [2]: 0x1691d5b13c8
#changing object reference at index 0
list1[0] = (7, 8, 9)
#printing the list
Output [3]: [(7, 8, 9), (4, 5, 6)]
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(list1)))
Output [4]: 0x1691d5b13c8
As an individual, it completely depends upon you and your requirements as to what kind of data structure you would like to create with a combination of mutable & immutable objects. I hope that this information will help you while deciding the type of object you would like to select going forward.
Before I end our discussion on IMMUTABILITY, allow me to use the word ‘CAVITE’ when we discuss the String and Integers. There is an exception, and you may see some surprising results while checking the truthiness for immutability. For instance:
#creating an object of integer type with value 10 and reference variable name ‘x’
x = 10
#printing the value of ‘x’
print(x)
Output [1]: 10
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(x)))
Output [2]: 0x538fb560
#creating an object of integer type with value 10 and reference variable name ‘y’
y = 10
#printing the value of ‘y’
print(y)
Output [3]: 10
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(y)))
Output [4]: 0x538fb560
As per our discussion and understanding, so far, the memory address for x & y should have been different, since, 10 is an instance of Integer class which is immutable. However, as shown in the above code, it has the same memory address. This is not something that we expected. It seems that what we have understood and discussed, has an exception as well.
Quick check – Python Data Structures
Tuples are immutable and hence cannot have any changes in them once they are created in Python. This is because they support the same sequence operations as strings. We all know that strings are immutable. The index operator will select an element from a tuple just like in a string. Hence, they are immutable.
Like all, there are exceptions in the immutability in python too. Not all immutable objects are really mutable. This will lead to a lot of doubts in your mind. Let us just take an example to understand this.
Consider a tuple ‘tup’.
Now, if we consider tuple tup = (‘GreatLearning’,[4,3,1,2]) ;
We see that the tuple has elements of different data types. The first element here is a string which as we all know is immutable in nature. The second element is a list which we all know is mutable. Now, we all know that the tuple itself is an immutable data type. It cannot change its contents. But, the list inside it can change its contents. So, the value of the Immutable objects cannot be changed but its constituent objects can. change its value.
Mutable Object | Immutable Object |
State of the object can be modified after it is created. | State of the object can’t be modified once it is created. |
They are not thread safe. | They are thread safe |
Mutable classes are not final. | It is important to make the class final before creating an immutable object. |
list, dictionary, set, user-defined classes.
int, float, decimal, bool, string, tuple, range.
Lists in Python are mutable data types as the elements of the list can be modified, individual elements can be replaced, and the order of elements can be changed even after the list has been created.
(Examples related to lists have been discussed earlier in this blog.)
Tuple and list data structures are very similar, but one big difference between the data types is that lists are mutable, whereas tuples are immutable. The reason for the tuple’s immutability is that once the elements are added to the tuple and the tuple has been created; it remains unchanged.
A programmer would always prefer building a code that can be reused instead of making the whole data object again. Still, even though tuples are immutable, like lists, they can contain any Python object, including mutable objects.
A set is an iterable unordered collection of data type which can be used to perform mathematical operations (like union, intersection, difference etc.). Every element in a set is unique and immutable, i.e. no duplicate values should be there, and the values can’t be changed. However, we can add or remove items from the set as the set itself is mutable.
Strings are not mutable in Python. Strings are a immutable data types which means that its value cannot be updated.
Join Great Learning Academy’s free online courses and upgrade your skills today.
Original article source at: https://www.mygreatlearning.com
1641430440
Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of Pandas. Importing the library adds a complementary plotting method plot_bokeh() on DataFrames and Series.
With Pandas-Bokeh, creating stunning, interactive, HTML-based visualization is as easy as calling:
df.plot_bokeh()
Pandas-Bokeh also provides native support as a Pandas Plotting backend for Pandas >= 0.25. When Pandas-Bokeh is installed, switchting the default Pandas plotting backend to Bokeh can be done via:
pd.set_option('plotting.backend', 'pandas_bokeh')
More details about the new Pandas backend can be found below.
Please visit:
https://patrikhlobil.github.io/Pandas-Bokeh/
for an interactive version of the documentation below, where you can play with the dynamic Bokeh plots.
For more information have a look at the Examples below or at notebooks on the Github Repository of this project.
You can install Pandas-Bokeh from PyPI via pip
pip install pandas-bokeh
or conda:
conda install -c patrikhlobil pandas-bokeh
With the current release 0.5.5, Pandas-Bokeh officially supports Python 3.6 and newer. For more details, see Release Notes.
The Pandas-Bokeh library should be imported after Pandas, GeoPandas and/or Pyspark. After the import, one should define the plotting output, which can be:
pandas_bokeh.output_notebook(): Embeds the Plots in the cell outputs of the notebook. Ideal when working in Jupyter Notebooks.
pandas_bokeh.output_file(filename): Exports the plot to the provided filename as an HTML.
For more details about the plotting outputs, see the reference here or the Bokeh documentation.
import pandas as pd import pandas_bokeh pandas_bokeh.output_notebook()
import pandas as pd import pandas_bokeh pandas_bokeh.output_file("Interactive Plot.html")
For pandas >= 0.25, a plotting backend switch is natively supported. It can be achievied by calling:
import pandas as pd
pd.set_option('plotting.backend', 'pandas_bokeh')
Now, the plotting API is accessible for a Pandas DataFrame via:
df.plot(...)
All additional functionalities of Pandas-Bokeh are then accessible at pd.plotting. So, setting the output to notebook is:
pd.plotting.output_notebook()
or calling the grid layout functionality:
pd.plotting.plot_grid(...)
Note: Backwards compatibility is kept since there will still be the df.plot_bokeh(...) methods for a DataFrame.
Supported plottypes are at the moment:
Also, check out the complementary chapter Outputs, Formatting & Layouts about:
This simple lineplot in Pandas-Bokeh already contains various interactive elements:
Consider the following simple example:
import numpy as np
np.random.seed(42)
df = pd.DataFrame({"Google": np.random.randn(1000)+0.2,
"Apple": np.random.randn(1000)+0.17},
index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(kind="line") #equivalent to df.plot_bokeh.line()
Note, that similar to the regular pandas.DataFrame.plot method, there are also additional accessors to directly access the different plotting types like:
df.plot_bokeh(kind="line", ...)
→ df.plot_bokeh.line(...)
df.plot_bokeh(kind="bar", ...)
→ df.plot_bokeh.bar(...)
df.plot_bokeh(kind="hist", ...)
→ df.plot_bokeh.hist(...)
There are various optional parameters to tune the plots, for example:
kind: Which kind of plot should be produced. Currently supported are: "line", "point", "scatter", "bar" and "histogram". In the near future many more will be implemented as horizontal barplot, boxplots, pie-charts, etc.
x: Name of the column to use for the horizontal x-axis. If the x parameter is not specified, the index is used for the x-values of the plot. Alternative, also an array of values can be passed that has the same number of elements as the DataFrame.
y: Name of column or list of names of columns to use for the vertical y-axis.
figsize: Choose width & height of the plot
title: Sets title of the plot
xlim/ylim: Set visibler range of plot for x- and y-axis (also works for datetime x-axis)
xlabel/ylabel: Set x- and y-labels
logx/logy: Set log-scale on x-/y-axis
xticks/yticks: Explicitly set the ticks on the axes
color: Defines a single color for a plot.
colormap: Can be used to specify multiple colors to plot. Can be either a list of colors or the name of a Bokeh color palette
hovertool: If True a Hovertool is active, else if False no Hovertool is drawn.
hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation and here)
toolbar_location: Specify the position of the toolbar location (None, "above", "below", "left" or "right"). Default: "right"
zooming: Enables/Disables zooming. Default: True
panning: Enables/Disables panning. Default: True
fontsize_label/fontsize_ticks/fontsize_title/fontsize_legend: Set fontsize of labels, ticks, title or legend (int or string of form "15pt")
rangetool Enables a range tool scroller. Default False
kwargs**: Optional keyword arguments of bokeh.plotting.figure.line
Try them out to get a feeling for the effects. Let us consider now:
df.plot_bokeh.line(
figsize=(800, 450),
y="Apple",
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(0, 400),
toolbar_location=None,
colormap=["red", "blue"],
hovertool_string=r"""<img
src='https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png'
height="42" alt="@imgs" width="42"
style="float: left; margin: 0px 15px 15px 0px;"
border="2"></img> Apple
<h4> Stock Price: </h4> @{Apple}""",
panning=False,
zooming=False)
For lineplots, as for many other plot-kinds, there are some special keyword arguments that only work for this plotting type. For lineplots, these are:
plot_data_points: Plot also the data points on the lines
plot_data_points_size: Determines the size of the data points
marker: Defines the point type (Default: "circle"). Possible values are: 'circle', 'square', 'triangle', 'asterisk', 'circle_x', 'square_x', 'inverted_triangle', 'x', 'circle_cross', 'square_cross', 'diamond', 'cross'
kwargs**: Optional keyword arguments of bokeh.plotting.figure.line```
Let us use this information to have another version of the same plot:
df.plot_bokeh.line(
figsize=(800, 450),
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(100, 200),
xlim=("2001-01-01", "2001-02-01"),
colormap=["red", "blue"],
plot_data_points=True,
plot_data_points_size=10,
marker="asterisk")
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
df.plot_bokeh(rangetool=True)
Pointplot
If you just wish to draw the date points for curves, the pointplot option is the right choice. It also accepts the kwargs of bokeh.plotting.figure.scatter like marker or size:
import numpy as np
x = np.arange(-3, 3, 0.1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.point(
x="x",
xticks=range(-3, 4),
size=5,
colormap=["#009933", "#ff3399"],
title="Pointplot (Parabula vs. Cube)",
marker="x")
With a similar API as the line- & pointplots, one can generate a stepplot. Additional keyword arguments for this plot type are passes to bokeh.plotting.figure.step, e.g. mode (before, after, center), see the following example
import numpy as np
x = np.arange(-3, 3, 1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.step(
x="x",
xticks=range(-1, 1),
colormap=["#009933", "#ff3399"],
title="Pointplot (Parabula vs. Cube)",
figsize=(800,300),
fontsize_title=30,
fontsize_label=25,
fontsize_ticks=15,
fontsize_legend=5,
)
df.plot_bokeh.step(
x="x",
xticks=range(-1, 1),
colormap=["#009933", "#ff3399"],
title="Pointplot (Parabula vs. Cube)",
mode="after",
figsize=(800,300)
)
Note that the step-plot API of Bokeh does so far not support a hovertool functionality.
A basic scatterplot can be created using the kind="scatter" option. For scatterplots, the x and y parameters have to be specified and the following optional keyword argument is allowed:
category: Determines the category column to use for coloring the scatter points
kwargs**: Optional keyword arguments of bokeh.plotting.figure.scatter
Note, that the pandas.DataFrame.plot_bokeh() method return per default a Bokeh figure, which can be embedded in Dashboard layouts with other figures and Bokeh objects (for more details about (sub)plot layouts and embedding the resulting Bokeh plots as HTML click here).
In the example below, we use the building grid layout support of Pandas-Bokeh to display both the DataFrame (using a Bokeh DataTable) and the resulting scatterplot:
# Load Iris Dataset:
df = pd.read_csv(
r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/iris/iris.csv"
)
df = df.sample(frac=1)
# Create Bokeh-Table with DataFrame:
from bokeh.models.widgets import DataTable, TableColumn
from bokeh.models import ColumnDataSource
data_table = DataTable(
columns=[TableColumn(field=Ci, title=Ci) for Ci in df.columns],
source=ColumnDataSource(df),
height=300,
)
# Create Scatterplot:
p_scatter = df.plot_bokeh.scatter(
x="petal length (cm)",
y="sepal width (cm)",
category="species",
title="Iris DataSet Visualization",
show_figure=False,
)
# Combine Table and Scatterplot via grid layout:
pandas_bokeh.plot_grid([[data_table, p_scatter]], plot_width=400, plot_height=350)
A possible optional keyword parameters that can be passed to bokeh.plotting.figure.scatter is size. Below, we use the sepal length of the Iris data as reference for the size:
#Change one value to clearly see the effect of the size keyword
df.loc[13, "sepal length (cm)"] = 15
#Make scatterplot:
p_scatter = df.plot_bokeh.scatter(
x="petal length (cm)",
y="sepal width (cm)",
category="species",
title="Iris DataSet Visualization with Size Keyword",
size="sepal length (cm)")
In this example you can see, that the additional dimension sepal length cannot be used to clearly differentiate between the virginica and versicolor species.
The barplot API has no special keyword arguments, but accepts optional kwargs of bokeh.plotting.figure.vbar like alpha. It uses per default the index for the bar categories (however, also columns can be used as x-axis category using the x argument).
data = {
'fruits':
['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh.bar(
ylabel="Price per Unit [€]",
title="Fruit prices per Year",
alpha=0.6)
Using the stacked keyword argument you also maked stacked barplots:
p_stacked_bar = df.plot_bokeh.bar(
ylabel="Price per Unit [€]",
title="Fruit prices per Year",
stacked=True,
alpha=0.6)
Also horizontal versions of the above barplot are supported with the keyword kind="barh" or the accessor plot_bokeh.barh. You can still specify a column of the DataFrame as the bar category via the x argument if you do not wish to use the index.
#Reset index, such that "fruits" is now a column of the DataFrame:
df.reset_index(inplace=True)
#Create horizontal bar (via kind keyword):
p_hbar = df.plot_bokeh(
kind="barh",
x="fruits",
xlabel="Price per Unit [€]",
title="Fruit prices per Year",
alpha=0.6,
legend = "bottom_right",
show_figure=False)
#Create stacked horizontal bar (via barh accessor):
p_stacked_hbar = df.plot_bokeh.barh(
x="fruits",
stacked=True,
xlabel="Price per Unit [€]",
title="Fruit prices per Year",
alpha=0.6,
legend = "bottom_right",
show_figure=False)
#Plot all barplot examples in a grid:
pandas_bokeh.plot_grid([[p_bar, p_stacked_bar],
[p_hbar, p_stacked_hbar]],
plot_width=450)
For drawing histograms (kind="hist"), Pandas-Bokeh has a lot of customization features. Optional keyword arguments for histogram plots are:
bins: Determines bins to use for the histogram. If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. If bins is a string, it defines the method used to calculate the optimal bin width, as defined by histogram_bin_edges.
histogram_type: Either "sidebyside", "topontop" or "stacked". Default: "topontop"
stacked: Boolean that overrides the histogram_type as "stacked" if given. Default: False
kwargs**: Optional keyword arguments of bokeh.plotting.figure.quad
Below examples of the different histogram types:
import numpy as np
df_hist = pd.DataFrame({
'a': np.random.randn(1000) + 1,
'b': np.random.randn(1000),
'c': np.random.randn(1000) - 1
},
columns=['a', 'b', 'c'])
#Top-on-Top Histogram (Default):
df_hist.plot_bokeh.hist(
bins=np.linspace(-5, 5, 41),
vertical_xlabel=True,
hovertool=False,
title="Normal distributions (Top-on-Top)",
line_color="black")
#Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
#kind="hist":
df_hist.plot_bokeh(
kind="hist",
bins=np.linspace(-5, 5, 41),
histogram_type="sidebyside",
vertical_xlabel=True,
hovertool=False,
title="Normal distributions (Side-by-Side)",
line_color="black")
#Stacked histogram:
df_hist.plot_bokeh.hist(
bins=np.linspace(-5, 5, 41),
histogram_type="stacked",
vertical_xlabel=True,
hovertool=False,
title="Normal distributions (Stacked)",
line_color="black")
Further, advanced keyword arguments for histograms are:
Their usage is shown in these examples:
p_hist = df_hist.plot_bokeh.hist(
y=["a", "b"],
bins=np.arange(-4, 6.5, 0.5),
normed=100,
vertical_xlabel=True,
ylabel="Share[%]",
title="Normal distributions (normed)",
show_average=True,
xlim=(-4, 6),
ylim=(0, 30),
show_figure=False)
p_hist_cum = df_hist.plot_bokeh.hist(
y=["a", "b"],
bins=np.arange(-4, 6.5, 0.5),
normed=100,
cumulative=True,
vertical_xlabel=True,
ylabel="Share[%]",
title="Normal distributions (normed & cumulative)",
show_figure=False)
pandas_bokeh.plot_grid([[p_hist, p_hist_cum]], plot_width=450, plot_height=300)
Areaplot (kind="area") can be either drawn on top of each other or stacked. The important parameters are:
stacked: If True, the areaplots are stacked. If False, plots are drawn on top of each other. Default: False
kwargs**: Optional keyword arguments of bokeh.plotting.figure.patch
Let us consider the energy consumption split by source that can be downloaded as DataFrame via:
df_energy = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/energy/energy.csv",
parse_dates=["Year"])
df_energy.head()
Year | Oil | Gas | Coal | Nuclear Energy | Hydroelectricity | Other Renewable |
---|---|---|---|---|---|---|
1970-01-01 | 2291.5 | 826.7 | 1467.3 | 17.7 | 265.8 | 5.8 |
1971-01-01 | 2427.7 | 884.8 | 1459.2 | 24.9 | 276.4 | 6.3 |
1972-01-01 | 2613.9 | 933.7 | 1475.7 | 34.1 | 288.9 | 6.8 |
1973-01-01 | 2818.1 | 978.0 | 1519.6 | 45.9 | 292.5 | 7.3 |
1974-01-01 | 2777.3 | 1001.9 | 1520.9 | 59.6 | 321.1 | 7.7 |
Creating the Areaplot can be achieved via:
df_energy.plot_bokeh.area(
x="Year",
stacked=True,
legend="top_left",
colormap=["brown", "orange", "black", "grey", "blue", "green"],
title="Worldwide energy consumption split by energy source",
ylabel="Million tonnes oil equivalent",
ylim=(0, 16000))
Note that the energy consumption of fossile energy is still increasing and renewable energy sources are still small in comparison 😢!!! However, when we norm the plot using the normed keyword, there is a clear trend towards renewable energies in the last decade:
df_energy.plot_bokeh.area(
x="Year",
stacked=True,
normed=100,
legend="bottom_left",
colormap=["brown", "orange", "black", "grey", "blue", "green"],
title="Worldwide energy consumption split by energy source",
ylabel="Million tonnes oil equivalent")
Pieplot
For Pieplots, let us consider a dataset showing the results of all Bundestags elections in Germany since 2002:
df_pie = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/Bundestagswahl/Bundestagswahl.csv")
df_pie
Partei | 2002 | 2005 | 2009 | 2013 | 2017 |
---|---|---|---|---|---|
CDU/CSU | 38.5 | 35.2 | 33.8 | 41.5 | 32.9 |
SPD | 38.5 | 34.2 | 23.0 | 25.7 | 20.5 |
FDP | 7.4 | 9.8 | 14.6 | 4.8 | 10.7 |
Grünen | 8.6 | 8.1 | 10.7 | 8.4 | 8.9 |
Linke/PDS | 4.0 | 8.7 | 11.9 | 8.6 | 9.2 |
AfD | 0.0 | 0.0 | 0.0 | 0.0 | 12.6 |
Sonstige | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 |
We can create a Pieplot of the last election in 2017 by specifying the "Partei" (german for party) column as the x column and the "2017" column as the y column for values:
df_pie.plot_bokeh.pie(
x="Partei",
y="2017",
colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
title="Results of German Bundestag Election 2017",
)
When you pass several columns to the y parameter (not providing the y-parameter assumes you plot all columns), multiple nested pieplots will be shown in one plot:
df_pie.plot_bokeh.pie(
x="Partei",
colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
title="Results of German Bundestag Elections [2002-2017]",
line_color="grey")
Mapplot
The mapplot method of Pandas-Bokeh allows for plotting geographic points stored in a Pandas DataFrame on an interactive map. For more advanced Geoplots for line and polygon shapes have a look at the Geoplots examples for the GeoPandas API of Pandas-Bokeh.
For mapplots, only (latitude, longitude) pairs in geographic projection (WGS84) can be plotted on a map. The basic API has the following 2 base parameters:
The other optional keyword arguments are discussed in the section about the GeoPandas API, e.g. category for coloring the points.
Below an example of plotting all cities for more than 1 million inhabitants:
df_mapplot = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/populated_places.csv")
df_mapplot.head()
name | pop_max | latitude | longitude | size |
---|---|---|---|---|
Mesa | 1085394 | 33.423915 | -111.736084 | 1.085394 |
Sharjah | 1103027 | 25.371383 | 55.406478 | 1.103027 |
Changwon | 1081499 | 35.219102 | 128.583562 | 1.081499 |
Sheffield | 1292900 | 53.366677 | -1.499997 | 1.292900 |
Abbottabad | 1183647 | 34.149503 | 73.199501 | 1.183647 |
df_mapplot["size"] = df_mapplot["pop_max"] / 1000000
df_mapplot.plot_bokeh.map(
x="longitude",
y="latitude",
hovertool_string="""<h2> @{name} </h2>
<h3> Population: @{pop_max} </h3>""",
tile_provider="STAMEN_TERRAIN_RETINA",
size="size",
figsize=(900, 600),
title="World cities with more than 1.000.000 inhabitants")
Pandas-Bokeh also allows for interactive plotting of Maps using GeoPandas by providing a geopandas.GeoDataFrame.plot_bokeh() method. It allows to plot the following geodata on a map :
Note: t is not possible to mix up the objects types, i.e. a GeoDataFrame with Points and Lines is for example not allowed.
Les us start with a simple example using the "World Borders Dataset" . Let us first import all neccessary libraries and read the shapefile:
import geopandas as gpd
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()
#Read in GeoJSON from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states.head()
STATE_NAME | REGION | POPESTIMATE2010 | POPESTIMATE2011 | POPESTIMATE2012 | POPESTIMATE2013 | POPESTIMATE2014 | POPESTIMATE2015 | POPESTIMATE2016 | POPESTIMATE2017 | geometry |
---|---|---|---|---|---|---|---|---|---|---|
Hawaii | 4 | 1363817 | 1378323 | 1392772 | 1408038 | 1417710 | 1426320 | 1428683 | 1427538 | (POLYGON ((-160.0738033454681 22.0041773479577... |
Washington | 4 | 6741386 | 6819155 | 6890899 | 6963410 | 7046931 | 7152818 | 7280934 | 7405743 | (POLYGON ((-122.4020153103835 48.2252163723779... |
Montana | 4 | 990507 | 996866 | 1003522 | 1011921 | 1019931 | 1028317 | 1038656 | 1050493 | POLYGON ((-111.4754253002074 44.70216236909688... |
Maine | 1 | 1327568 | 1327968 | 1328101 | 1327975 | 1328903 | 1327787 | 1330232 | 1335907 | (POLYGON ((-69.77727626137293 44.0741483685119... |
North Dakota | 2 | 674518 | 684830 | 701380 | 722908 | 738658 | 754859 | 755548 | 755393 | POLYGON ((-98.73043728833767 45.93827137024809... |
Plotting the data on a map is as simple as calling:
df_states.plot_bokeh(simplify_shapes=10000)
We also passed the optional parameter simplify_shapes (~meter) to improve plotting performance (for a reference see shapely.object.simplify). The above geolayer thus has an accuracy of about 10km.
Many keyword arguments like xlabel, ylabel, xlim, ylim, title, colormap, hovertool, zooming, panning, ... for costumizing the plot are also available for the geoplotting API and can be uses as in the examples shown above. There are however also many other options especially for plotting geodata:
One of the most common usage of map plots are choropleth maps, where the color of a the objects is determined by the property of the object itself. There are 3 ways of drawing choropleth maps using Pandas-Bokeh, which are described below.
This is the simplest way. Just provide the category keyword for the selection of the property column:
Let us now draw the regions as a choropleth plot using the category keyword (at the moment, only numerical columns are supported for choropleth plots):
df_states.plot_bokeh(
figsize=(900, 600),
simplify_shapes=5000,
category="REGION",
show_colorbar=False,
colormap=["blue", "yellow", "green", "red"],
hovertool_columns=["STATE_NAME", "REGION"],
tile_provider="STAMEN_TERRAIN_RETINA")
When hovering over the states, the state-name and the region are shown as specified in the hovertool_columns argument.
By passing a list of column names of the GeoDataFrame as the dropdown keyword argument, a dropdown menu is shown above the map. This dropdown menu can be used to select the choropleth layer by the user. :
df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()
df_states.plot_bokeh(
figsize=(900, 600),
simplify_shapes=5000,
dropdown=["POPESTIMATE2010", "POPESTIMATE2017"],
colormap="Viridis",
hovertool_string="""
<img
src="https://www.states101.com/img/flags/gif/small/@STATE_NAME_SMALL.gif"
height="42" alt="@imgs" width="42"
style="float: left; margin: 0px 15px 15px 0px;"
border="2"></img>
<h2> @STATE_NAME </h2>
<h3> 2010: @POPESTIMATE2010 </h3>
<h3> 2017: @POPESTIMATE2017 </h3>""",
tile_provider_url=r"http://c.tile.stamen.com/watercolor/{Z}/{X}/{Y}.jpg",
tile_attribution='Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'
)
Using hovertool_string, one can pass a string that can contain arbitrary HTML elements (including divs, images, ...) that is shown when hovering over the geographies (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation).
Here, we also used an OSM tile server with watercolor style via tile_provider_url and added the attribution via tile_attribution.
Another option for interactive choropleth maps is the slider implementation of Pandas-Bokeh. The possible keyword arguments are here:
This can be used to display the change in population relative to the year 2010:
#Calculate change of population relative to 2010:
for i in range(8):
df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100
#Specify slider columns:
slider_columns = ["Delta_Population_201%d"%i for i in range(8)]
#Specify slider-range (Maps "Delta_Population_2010" -> 2010,
# "Delta_Population_2011" -> 2011, ...):
slider_range = range(2010, 2018)
#Make slider plot:
df_states.plot_bokeh(
figsize=(900, 600),
simplify_shapes=5000,
slider=slider_columns,
slider_range=slider_range,
slider_name="Year",
colormap="Inferno",
hovertool_columns=["STATE_NAME"] + slider_columns,
title="Change of Population [%]")
If you wish to display multiple geolayers, you can pass the Bokeh figure of a Pandas-Bokeh plot via the figure keyword to the next plot_bokeh() call:
import geopandas as gpd
import pandas_bokeh
pandas_bokeh.output_notebook()
# Read in GeoJSONs from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_cities = gpd.read_file(
r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson"
)
df_cities["size"] = df_cities.pop_max / 400000
#Plot shapes of US states (pass figure options to this initial plot):
figure = df_states.plot_bokeh(
figsize=(800, 450),
simplify_shapes=10000,
show_figure=False,
xlim=[-170, -80],
ylim=[10, 70],
category="REGION",
colormap="Dark2",
legend="States",
show_colorbar=False,
)
#Plot cities as points on top of the US states layer by passing the figure:
df_cities.plot_bokeh(
figure=figure, # <== pass figure here!
category="pop_max",
colormap="Viridis",
colormap_uselog=True,
size="size",
hovertool_string="""<h1>@name</h1>
<h3>Population: @pop_max </h3>""",
marker="inverted_triangle",
legend="Cities",
)
Below, you can see an example that use Pandas-Bokeh to plot point data on a map. The plot shows all cities with a population larger than 1.000.000. For point plots, you can select the marker as keyword argument (since it is passed to bokeh.plotting.figure.scatter). Here an overview of all available marker types:
gdf = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson")
gdf["size"] = gdf.pop_max / 400000
gdf.plot_bokeh(
category="pop_max",
colormap="Viridis",
colormap_uselog=True,
size="size",
hovertool_string="""<h1>@name</h1>
<h3>Population: @pop_max </h3>""",
xlim=[-15, 35],
ylim=[30,60],
marker="inverted_triangle");
In a similar way, also GeoDataFrames with (multi)line shapes can be drawn using Pandas-Bokeh.
If you want to display the numerical labels on your colorbar with an alternative to the scientific format, you can pass in a one of the bokeh number string formats or an instance of one of the bokeh.models.formatters to the colorbar_tick_format
argument in the geoplot
An example of using the string format argument:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()
# pass in a string format to colorbar_tick_format to display the ticks as 10m rather than 1e7
df_states.plot_bokeh(
figsize=(900, 600),
category="POPESTIMATE2017",
simplify_shapes=5000,
colormap="Inferno",
colormap_uselog=True,
colorbar_tick_format="0.0a")
An example of using the bokeh PrintfTickFormatter
:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()
for i in range(8):
df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100
# pass in a PrintfTickFormatter instance colorbar_tick_format to display the ticks with 2 decimal places
df_states.plot_bokeh(
figsize=(900, 600),
category="Delta_Population_2017",
simplify_shapes=5000,
colormap="Inferno",
colorbar_tick_format=PrintfTickFormatter(format="%4.2f"))
The pandas.DataFrame.plot_bokeh API has the following additional keyword arguments:
If you have a Bokeh figure or layout, you can also use the pandas_bokeh.embedded_html function to generate an embeddable HTML representation of the plot. This can be included into any valid HTML (note that this is not possible directly with the HTML generated by the pandas_bokeh.output_file output option, because it includes an HTML header). Let us consider the following simple example:
#Import Pandas and Pandas-Bokeh (if you do not specify an output option, the standard is
#output_file):
import pandas as pd
import pandas_bokeh
#Create DataFrame to Plot:
import numpy as np
x = np.arange(-10, 10, 0.1)
sin = np.sin(x)
cos = np.cos(x)
tan = np.tan(x)
df = pd.DataFrame({"x": x, "sin(x)": sin, "cos(x)": cos, "tan(x)": tan})
#Make Bokeh plot from DataFrame using Pandas-Bokeh. Do not show the plot, but export
#it to an embeddable HTML string:
html_plot = df.plot_bokeh(
kind="line",
x="x",
y=["sin(x)", "cos(x)", "tan(x)"],
xticks=range(-20, 20),
title="Trigonometric functions",
show_figure=False,
return_html=True,
ylim=(-1.5, 1.5))
#Write some HTML and embed the HTML plot below it. For production use, please use
#Templates and the awesome Jinja library.
html = r"""
<script type="text/x-mathjax-config">
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<h1> Trigonometric functions </h1>
<p> The basic trigonometric functions are:</p>
<p>$ sin(x) $</p>
<p>$ cos(x) $</p>
<p>$ tan(x) = \frac{sin(x)}{cos(x)}$</p>
<p>Below is a plot that shows them</p>
""" + html_plot
#Export the HTML string to an external HTML file and show it:
with open("test.html" , "w") as f:
f.write(html)
import webbrowser
webbrowser.open("test.html")
This code will open up a webbrowser and show the following page. As you can see, the interactive Bokeh plot is embedded nicely into the HTML layout. The return_html option is ideal for the use in a templating engine like Jinja.
For single plots that have a number of x axis values or for larger monitors, you can auto scale the figure to the width of the entire jupyter cell by setting the sizing_mode
parameter.
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) df.plot_bokeh(kind="bar", figsize=(500, 200), sizing_mode="scale_width")
The figsize
parameter can be used to change the height and width as well as act as a scaling multiplier against the axis that is not being scaled.
To change the formats of numbers in the hovertool, use the number_format keyword argument. For a documentation about the format to pass, have a look at the Bokeh documentation.Let us consider some examples for the number 3.141592653589793:
Format | Output |
---|---|
0 | 3 |
0.000 | 3.141 |
0.00 $ | 3.14 $ |
This number format will be applied to all numeric columns of the hovertool. If you want to make a very custom or complicated hovertool, you should probably use the hovertool_string keyword argument, see e.g. this example. Below, we use the number_format parameter to specify the "Stock Price" format to 2 decimal digits and an additional $ sign.
import numpy as np
#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
"Google": np.random.randn(1000) + 0.2,
"Apple": np.random.randn(1000) + 0.17
},
index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(
kind="line",
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(0, 400),
colormap=["red", "blue"],
number_format="1.00 $")
If you want to suppress the scientific notation for axes, you can use the disable_scientific_axes parameter, which accepts one of "x", "y", "xy":
df = pd.DataFrame({"Animal": ["Mouse", "Rabbit", "Dog", "Tiger", "Elefant", "Wale"],
"Weight [g]": [19, 3000, 40000, 200000, 6000000, 50000000]})
p_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", show_figure=False)
p_non_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", disable_scientific_axes="y", show_figure=False,)
pandas_bokeh.plot_grid([[p_scientific, p_non_scientific]], plot_width = 450)
As shown in the Scatterplot Example, combining plots with plots or other HTML elements is straighforward in Pandas-Bokeh due to the layout capabilities of Bokeh. The easiest way to generate a dashboard layout is using the pandas_bokeh.plot_grid method (which is an extension of bokeh.layouts.gridplot):
import pandas as pd
import numpy as np
import pandas_bokeh
pandas_bokeh.output_notebook()
#Barplot:
data = {
'fruits':
['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh(
kind="bar",
ylabel="Price per Unit [€]",
title="Fruit prices per Year",
show_figure=False)
#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
"Google": np.random.randn(1000) + 0.2,
"Apple": np.random.randn(1000) + 0.17
},
index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
p_line = df.plot_bokeh(
kind="line",
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(0, 400),
colormap=["red", "blue"],
show_figure=False)
#Scatterplot:
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris["data"])
df.columns = iris["feature_names"]
df["species"] = iris["target"]
df["species"] = df["species"].map(dict(zip(range(3), iris["target_names"])))
p_scatter = df.plot_bokeh(
kind="scatter",
x="petal length (cm)",
y="sepal width (cm)",
category="species",
title="Iris DataSet Visualization",
show_figure=False)
#Histogram:
df_hist = pd.DataFrame({
'a': np.random.randn(1000) + 1,
'b': np.random.randn(1000),
'c': np.random.randn(1000) - 1
},
columns=['a', 'b', 'c'])
p_hist = df_hist.plot_bokeh(
kind="hist",
bins=np.arange(-6, 6.5, 0.5),
vertical_xlabel=True,
normed=100,
hovertool=False,
title="Normal distributions",
show_figure=False)
#Make Dashboard with Grid Layout:
pandas_bokeh.plot_grid([[p_line, p_bar],
[p_scatter, p_hist]], plot_width=450)
Using a combination of row and column elements (see also Bokeh Layouts) allow for a very easy general arrangement of elements. An alternative layout to the one above is:
p_line.plot_width = 900
p_hist.plot_width = 900
layout = pandas_bokeh.column(p_line,
pandas_bokeh.row(p_scatter, p_bar),
p_hist)
pandas_bokeh.show(layout)
Release Notes
Release Notes can be found here.
Contributing to Pandas-Bokeh
If you wish to contribute to the development of Pandas-Bokeh
you can follow the instructions on the CONTRIBUTING.md.
Author: PatrikHlobil
Source Code: https://github.com/PatrikHlobil/Pandas-Bokeh
License: MIT License
1642995900
Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of Pandas. Importing the library adds a complementary plotting method plot_bokeh() on DataFrames and Series.
With Pandas-Bokeh, creating stunning, interactive, HTML-based visualization is as easy as calling:
df.plot_bokeh()
Pandas-Bokeh also provides native support as a Pandas Plotting backend for Pandas >= 0.25. When Pandas-Bokeh is installed, switchting the default Pandas plotting backend to Bokeh can be done via:
pd.set_option('plotting.backend', 'pandas_bokeh')
More details about the new Pandas backend can be found below.
Please visit:
https://patrikhlobil.github.io/Pandas-Bokeh/
for an interactive version of the documentation below, where you can play with the dynamic Bokeh plots.
For more information have a look at the Examples below or at notebooks on the Github Repository of this project.
You can install Pandas-Bokeh from PyPI via pip
pip install pandas-bokeh
or conda:
conda install -c patrikhlobil pandas-bokeh
With the current release 0.5.5, Pandas-Bokeh officially supports Python 3.6 and newer. For more details, see Release Notes.
The Pandas-Bokeh library should be imported after Pandas, GeoPandas and/or Pyspark. After the import, one should define the plotting output, which can be:
For more details about the plotting outputs, see the reference here or the Bokeh documentation.
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_file("Interactive Plot.html")
For pandas >= 0.25, a plotting backend switch is natively supported. It can be achievied by calling:
import pandas as pd
pd.set_option('plotting.backend', 'pandas_bokeh')
Now, the plotting API is accessible for a Pandas DataFrame via:
df.plot(...)
All additional functionalities of Pandas-Bokeh are then accessible at pd.plotting. So, setting the output to notebook is:
pd.plotting.output_notebook()
or calling the grid layout functionality:
pd.plotting.plot_grid(...)
Note: Backwards compatibility is kept since there will still be the df.plot_bokeh(...) methods for a DataFrame.
Supported plottypes are at the moment:
Also, check out the complementary chapter Outputs, Formatting & Layouts about:
This simple lineplot in Pandas-Bokeh already contains various interactive elements:
Consider the following simple example:
import numpy as np
np.random.seed(42)
df = pd.DataFrame({"Google": np.random.randn(1000)+0.2,
"Apple": np.random.randn(1000)+0.17},
index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(kind="line") #equivalent to df.plot_bokeh.line()
Note, that similar to the regular pandas.DataFrame.plot method, there are also additional accessors to directly access the different plotting types like:
df.plot_bokeh(kind="line", ...)
→ df.plot_bokeh.line(...)
df.plot_bokeh(kind="bar", ...)
→ df.plot_bokeh.bar(...)
df.plot_bokeh(kind="hist", ...)
→ df.plot_bokeh.hist(...)
There are various optional parameters to tune the plots, for example:
Try them out to get a feeling for the effects. Let us consider now:
df.plot_bokeh.line(
figsize=(800, 450),
y="Apple",
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(0, 400),
toolbar_location=None,
colormap=["red", "blue"],
hovertool_string=r"""<img
src='https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png'
height="42" alt="@imgs" width="42"
style="float: left; margin: 0px 15px 15px 0px;"
border="2"></img> Apple
<h4> Stock Price: </h4> @{Apple}""",
panning=False,
zooming=False)
For lineplots, as for many other plot-kinds, there are some special keyword arguments that only work for this plotting type. For lineplots, these are:
Let us use this information to have another version of the same plot:
df.plot_bokeh.line(
figsize=(800, 450),
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(100, 200),
xlim=("2001-01-01", "2001-02-01"),
colormap=["red", "blue"],
plot_data_points=True,
plot_data_points_size=10,
marker="asterisk")
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
df.plot_bokeh(rangetool=True)
If you just wish to draw the date points for curves, the pointplot option is the right choice. It also accepts the kwargs of bokeh.plotting.figure.scatter like marker or size:
import numpy as np
x = np.arange(-3, 3, 0.1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.point(
x="x",
xticks=range(-3, 4),
size=5,
colormap=["#009933", "#ff3399"],
title="Pointplot (Parabula vs. Cube)",
marker="x")
With a similar API as the line- & pointplots, one can generate a stepplot. Additional keyword arguments for this plot type are passes to bokeh.plotting.figure.step, e.g. mode (before, after, center), see the following example
import numpy as np
x = np.arange(-3, 3, 1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.step(
x="x",
xticks=range(-1, 1),
colormap=["#009933", "#ff3399"],
title="Pointplot (Parabula vs. Cube)",
figsize=(800,300),
fontsize_title=30,
fontsize_label=25,
fontsize_ticks=15,
fontsize_legend=5,
)
df.plot_bokeh.step(
x="x",
xticks=range(-1, 1),
colormap=["#009933", "#ff3399"],
title="Pointplot (Parabula vs. Cube)",
mode="after",
figsize=(800,300)
)
Note that the step-plot API of Bokeh does so far not support a hovertool functionality.
A basic scatterplot can be created using the kind="scatter" option. For scatterplots, the x and y parameters have to be specified and the following optional keyword argument is allowed:
category: Determines the category column to use for coloring the scatter points
kwargs**: Optional keyword arguments of bokeh.plotting.figure.scatter
Note, that the pandas.DataFrame.plot_bokeh() method return per default a Bokeh figure, which can be embedded in Dashboard layouts with other figures and Bokeh objects (for more details about (sub)plot layouts and embedding the resulting Bokeh plots as HTML click here).
In the example below, we use the building grid layout support of Pandas-Bokeh to display both the DataFrame (using a Bokeh DataTable) and the resulting scatterplot:
# Load Iris Dataset:
df = pd.read_csv(
r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/iris/iris.csv"
)
df = df.sample(frac=1)
# Create Bokeh-Table with DataFrame:
from bokeh.models.widgets import DataTable, TableColumn
from bokeh.models import ColumnDataSource
data_table = DataTable(
columns=[TableColumn(field=Ci, title=Ci) for Ci in df.columns],
source=ColumnDataSource(df),
height=300,
)
# Create Scatterplot:
p_scatter = df.plot_bokeh.scatter(
x="petal length (cm)",
y="sepal width (cm)",
category="species",
title="Iris DataSet Visualization",
show_figure=False,
)
# Combine Table and Scatterplot via grid layout:
pandas_bokeh.plot_grid([[data_table, p_scatter]], plot_width=400, plot_height=350)
A possible optional keyword parameters that can be passed to bokeh.plotting.figure.scatter is size. Below, we use the sepal length of the Iris data as reference for the size:
#Change one value to clearly see the effect of the size keyword
df.loc[13, "sepal length (cm)"] = 15
#Make scatterplot:
p_scatter = df.plot_bokeh.scatter(
x="petal length (cm)",
y="sepal width (cm)",
category="species",
title="Iris DataSet Visualization with Size Keyword",
size="sepal length (cm)")
In this example you can see, that the additional dimension sepal length cannot be used to clearly differentiate between the virginica and versicolor species.
The barplot API has no special keyword arguments, but accepts optional kwargs of bokeh.plotting.figure.vbar like alpha. It uses per default the index for the bar categories (however, also columns can be used as x-axis category using the x argument).
data = {
'fruits':
['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh.bar(
ylabel="Price per Unit [€]",
title="Fruit prices per Year",
alpha=0.6)
Using the stacked keyword argument you also maked stacked barplots:
p_stacked_bar = df.plot_bokeh.bar(
ylabel="Price per Unit [€]",
title="Fruit prices per Year",
stacked=True,
alpha=0.6)
Also horizontal versions of the above barplot are supported with the keyword kind="barh" or the accessor plot_bokeh.barh. You can still specify a column of the DataFrame as the bar category via the x argument if you do not wish to use the index.
#Reset index, such that "fruits" is now a column of the DataFrame:
df.reset_index(inplace=True)
#Create horizontal bar (via kind keyword):
p_hbar = df.plot_bokeh(
kind="barh",
x="fruits",
xlabel="Price per Unit [€]",
title="Fruit prices per Year",
alpha=0.6,
legend = "bottom_right",
show_figure=False)
#Create stacked horizontal bar (via barh accessor):
p_stacked_hbar = df.plot_bokeh.barh(
x="fruits",
stacked=True,
xlabel="Price per Unit [€]",
title="Fruit prices per Year",
alpha=0.6,
legend = "bottom_right",
show_figure=False)
#Plot all barplot examples in a grid:
pandas_bokeh.plot_grid([[p_bar, p_stacked_bar],
[p_hbar, p_stacked_hbar]],
plot_width=450)
For drawing histograms (kind="hist"), Pandas-Bokeh has a lot of customization features. Optional keyword arguments for histogram plots are:
Below examples of the different histogram types:
import numpy as np
df_hist = pd.DataFrame({
'a': np.random.randn(1000) + 1,
'b': np.random.randn(1000),
'c': np.random.randn(1000) - 1
},
columns=['a', 'b', 'c'])
#Top-on-Top Histogram (Default):
df_hist.plot_bokeh.hist(
bins=np.linspace(-5, 5, 41),
vertical_xlabel=True,
hovertool=False,
title="Normal distributions (Top-on-Top)",
line_color="black")
#Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
#kind="hist":
df_hist.plot_bokeh(
kind="hist",
bins=np.linspace(-5, 5, 41),
histogram_type="sidebyside",
vertical_xlabel=True,
hovertool=False,
title="Normal distributions (Side-by-Side)",
line_color="black")
#Stacked histogram:
df_hist.plot_bokeh.hist(
bins=np.linspace(-5, 5, 41),
histogram_type="stacked",
vertical_xlabel=True,
hovertool=False,
title="Normal distributions (Stacked)",
line_color="black")
Further, advanced keyword arguments for histograms are:
Their usage is shown in these examples:
p_hist = df_hist.plot_bokeh.hist(
y=["a", "b"],
bins=np.arange(-4, 6.5, 0.5),
normed=100,
vertical_xlabel=True,
ylabel="Share[%]",
title="Normal distributions (normed)",
show_average=True,
xlim=(-4, 6),
ylim=(0, 30),
show_figure=False)
p_hist_cum = df_hist.plot_bokeh.hist(
y=["a", "b"],
bins=np.arange(-4, 6.5, 0.5),
normed=100,
cumulative=True,
vertical_xlabel=True,
ylabel="Share[%]",
title="Normal distributions (normed & cumulative)",
show_figure=False)
pandas_bokeh.plot_grid([[p_hist, p_hist_cum]], plot_width=450, plot_height=300)
Areaplot (kind="area") can be either drawn on top of each other or stacked. The important parameters are:
stacked: If True, the areaplots are stacked. If False, plots are drawn on top of each other. Default: False
kwargs**: Optional keyword arguments of bokeh.plotting.figure.patch
Let us consider the energy consumption split by source that can be downloaded as DataFrame via:
df_energy = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/energy/energy.csv",
parse_dates=["Year"])
df_energy.head()
Year | Oil | Gas | Coal | Nuclear Energy | Hydroelectricity | Other Renewable |
---|---|---|---|---|---|---|
1970-01-01 | 2291.5 | 826.7 | 1467.3 | 17.7 | 265.8 | 5.8 |
1971-01-01 | 2427.7 | 884.8 | 1459.2 | 24.9 | 276.4 | 6.3 |
1972-01-01 | 2613.9 | 933.7 | 1475.7 | 34.1 | 288.9 | 6.8 |
1973-01-01 | 2818.1 | 978.0 | 1519.6 | 45.9 | 292.5 | 7.3 |
1974-01-01 | 2777.3 | 1001.9 | 1520.9 | 59.6 | 321.1 | 7.7 |
Creating the Areaplot can be achieved via:
df_energy.plot_bokeh.area(
x="Year",
stacked=True,
legend="top_left",
colormap=["brown", "orange", "black", "grey", "blue", "green"],
title="Worldwide energy consumption split by energy source",
ylabel="Million tonnes oil equivalent",
ylim=(0, 16000))
Note that the energy consumption of fossile energy is still increasing and renewable energy sources are still small in comparison 😢!!! However, when we norm the plot using the normed keyword, there is a clear trend towards renewable energies in the last decade:
df_energy.plot_bokeh.area(
x="Year",
stacked=True,
normed=100,
legend="bottom_left",
colormap=["brown", "orange", "black", "grey", "blue", "green"],
title="Worldwide energy consumption split by energy source",
ylabel="Million tonnes oil equivalent")
For Pieplots, let us consider a dataset showing the results of all Bundestags elections in Germany since 2002:
df_pie = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/Bundestagswahl/Bundestagswahl.csv")
df_pie
Partei | 2002 | 2005 | 2009 | 2013 | 2017 |
---|---|---|---|---|---|
CDU/CSU | 38.5 | 35.2 | 33.8 | 41.5 | 32.9 |
SPD | 38.5 | 34.2 | 23.0 | 25.7 | 20.5 |
FDP | 7.4 | 9.8 | 14.6 | 4.8 | 10.7 |
Grünen | 8.6 | 8.1 | 10.7 | 8.4 | 8.9 |
Linke/PDS | 4.0 | 8.7 | 11.9 | 8.6 | 9.2 |
AfD | 0.0 | 0.0 | 0.0 | 0.0 | 12.6 |
Sonstige | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 |
We can create a Pieplot of the last election in 2017 by specifying the "Partei" (german for party) column as the x column and the "2017" column as the y column for values:
df_pie.plot_bokeh.pie(
x="Partei",
y="2017",
colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
title="Results of German Bundestag Election 2017",
)
When you pass several columns to the y parameter (not providing the y-parameter assumes you plot all columns), multiple nested pieplots will be shown in one plot:
df_pie.plot_bokeh.pie(
x="Partei",
colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
title="Results of German Bundestag Elections [2002-2017]",
line_color="grey")
The mapplot method of Pandas-Bokeh allows for plotting geographic points stored in a Pandas DataFrame on an interactive map. For more advanced Geoplots for line and polygon shapes have a look at the Geoplots examples for the GeoPandas API of Pandas-Bokeh.
For mapplots, only (latitude, longitude) pairs in geographic projection (WGS84) can be plotted on a map. The basic API has the following 2 base parameters:
The other optional keyword arguments are discussed in the section about the GeoPandas API, e.g. category for coloring the points.
Below an example of plotting all cities for more than 1 million inhabitants:
df_mapplot = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/populated_places.csv")
df_mapplot.head()
name | pop_max | latitude | longitude | size |
---|---|---|---|---|
Mesa | 1085394 | 33.423915 | -111.736084 | 1.085394 |
Sharjah | 1103027 | 25.371383 | 55.406478 | 1.103027 |
Changwon | 1081499 | 35.219102 | 128.583562 | 1.081499 |
Sheffield | 1292900 | 53.366677 | -1.499997 | 1.292900 |
Abbottabad | 1183647 | 34.149503 | 73.199501 | 1.183647 |
df_mapplot["size"] = df_mapplot["pop_max"] / 1000000
df_mapplot.plot_bokeh.map(
x="longitude",
y="latitude",
hovertool_string="""<h2> @{name} </h2>
<h3> Population: @{pop_max} </h3>""",
tile_provider="STAMEN_TERRAIN_RETINA",
size="size",
figsize=(900, 600),
title="World cities with more than 1.000.000 inhabitants")
Pandas-Bokeh also allows for interactive plotting of Maps using GeoPandas by providing a geopandas.GeoDataFrame.plot_bokeh() method. It allows to plot the following geodata on a map :
Note: t is not possible to mix up the objects types, i.e. a GeoDataFrame with Points and Lines is for example not allowed.
Les us start with a simple example using the "World Borders Dataset" . Let us first import all neccessary libraries and read the shapefile:
import geopandas as gpd
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()
#Read in GeoJSON from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states.head()
STATE_NAME | REGION | POPESTIMATE2010 | POPESTIMATE2011 | POPESTIMATE2012 | POPESTIMATE2013 | POPESTIMATE2014 | POPESTIMATE2015 | POPESTIMATE2016 | POPESTIMATE2017 | geometry |
---|---|---|---|---|---|---|---|---|---|---|
Hawaii | 4 | 1363817 | 1378323 | 1392772 | 1408038 | 1417710 | 1426320 | 1428683 | 1427538 | (POLYGON ((-160.0738033454681 22.0041773479577... |
Washington | 4 | 6741386 | 6819155 | 6890899 | 6963410 | 7046931 | 7152818 | 7280934 | 7405743 | (POLYGON ((-122.4020153103835 48.2252163723779... |
Montana | 4 | 990507 | 996866 | 1003522 | 1011921 | 1019931 | 1028317 | 1038656 | 1050493 | POLYGON ((-111.4754253002074 44.70216236909688... |
Maine | 1 | 1327568 | 1327968 | 1328101 | 1327975 | 1328903 | 1327787 | 1330232 | 1335907 | (POLYGON ((-69.77727626137293 44.0741483685119... |
North Dakota | 2 | 674518 | 684830 | 701380 | 722908 | 738658 | 754859 | 755548 | 755393 | POLYGON ((-98.73043728833767 45.93827137024809... |
Plotting the data on a map is as simple as calling:
df_states.plot_bokeh(simplify_shapes=10000)
We also passed the optional parameter simplify_shapes (~meter) to improve plotting performance (for a reference see shapely.object.simplify). The above geolayer thus has an accuracy of about 10km.
Many keyword arguments like xlabel, ylabel, xlim, ylim, title, colormap, hovertool, zooming, panning, ... for costumizing the plot are also available for the geoplotting API and can be uses as in the examples shown above. There are however also many other options especially for plotting geodata:
One of the most common usage of map plots are choropleth maps, where the color of a the objects is determined by the property of the object itself. There are 3 ways of drawing choropleth maps using Pandas-Bokeh, which are described below.
This is the simplest way. Just provide the category keyword for the selection of the property column:
Let us now draw the regions as a choropleth plot using the category keyword (at the moment, only numerical columns are supported for choropleth plots):
df_states.plot_bokeh(
figsize=(900, 600),
simplify_shapes=5000,
category="REGION",
show_colorbar=False,
colormap=["blue", "yellow", "green", "red"],
hovertool_columns=["STATE_NAME", "REGION"],
tile_provider="STAMEN_TERRAIN_RETINA")
When hovering over the states, the state-name and the region are shown as specified in the hovertool_columns argument.
By passing a list of column names of the GeoDataFrame as the dropdown keyword argument, a dropdown menu is shown above the map. This dropdown menu can be used to select the choropleth layer by the user. :
df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()
df_states.plot_bokeh(
figsize=(900, 600),
simplify_shapes=5000,
dropdown=["POPESTIMATE2010", "POPESTIMATE2017"],
colormap="Viridis",
hovertool_string="""
<img
src="https://www.states101.com/img/flags/gif/small/@STATE_NAME_SMALL.gif"
height="42" alt="@imgs" width="42"
style="float: left; margin: 0px 15px 15px 0px;"
border="2"></img>
<h2> @STATE_NAME </h2>
<h3> 2010: @POPESTIMATE2010 </h3>
<h3> 2017: @POPESTIMATE2017 </h3>""",
tile_provider_url=r"http://c.tile.stamen.com/watercolor/{Z}/{X}/{Y}.jpg",
tile_attribution='Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'
)
Using hovertool_string, one can pass a string that can contain arbitrary HTML elements (including divs, images, ...) that is shown when hovering over the geographies (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation).
Here, we also used an OSM tile server with watercolor style via tile_provider_url and added the attribution via tile_attribution.
Another option for interactive choropleth maps is the slider implementation of Pandas-Bokeh. The possible keyword arguments are here:
This can be used to display the change in population relative to the year 2010:
#Calculate change of population relative to 2010:
for i in range(8):
df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100
#Specify slider columns:
slider_columns = ["Delta_Population_201%d"%i for i in range(8)]
#Specify slider-range (Maps "Delta_Population_2010" -> 2010,
# "Delta_Population_2011" -> 2011, ...):
slider_range = range(2010, 2018)
#Make slider plot:
df_states.plot_bokeh(
figsize=(900, 600),
simplify_shapes=5000,
slider=slider_columns,
slider_range=slider_range,
slider_name="Year",
colormap="Inferno",
hovertool_columns=["STATE_NAME"] + slider_columns,
title="Change of Population [%]")
If you wish to display multiple geolayers, you can pass the Bokeh figure of a Pandas-Bokeh plot via the figure keyword to the next plot_bokeh() call:
import geopandas as gpd
import pandas_bokeh
pandas_bokeh.output_notebook()
# Read in GeoJSONs from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_cities = gpd.read_file(
r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson"
)
df_cities["size"] = df_cities.pop_max / 400000
#Plot shapes of US states (pass figure options to this initial plot):
figure = df_states.plot_bokeh(
figsize=(800, 450),
simplify_shapes=10000,
show_figure=False,
xlim=[-170, -80],
ylim=[10, 70],
category="REGION",
colormap="Dark2",
legend="States",
show_colorbar=False,
)
#Plot cities as points on top of the US states layer by passing the figure:
df_cities.plot_bokeh(
figure=figure, # <== pass figure here!
category="pop_max",
colormap="Viridis",
colormap_uselog=True,
size="size",
hovertool_string="""<h1>@name</h1>
<h3>Population: @pop_max </h3>""",
marker="inverted_triangle",
legend="Cities",
)
Below, you can see an example that use Pandas-Bokeh to plot point data on a map. The plot shows all cities with a population larger than 1.000.000. For point plots, you can select the marker as keyword argument (since it is passed to bokeh.plotting.figure.scatter). Here an overview of all available marker types:
gdf = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson")
gdf["size"] = gdf.pop_max / 400000
gdf.plot_bokeh(
category="pop_max",
colormap="Viridis",
colormap_uselog=True,
size="size",
hovertool_string="""<h1>@name</h1>
<h3>Population: @pop_max </h3>""",
xlim=[-15, 35],
ylim=[30,60],
marker="inverted_triangle");
In a similar way, also GeoDataFrames with (multi)line shapes can be drawn using Pandas-Bokeh.
If you want to display the numerical labels on your colorbar with an alternative to the scientific format, you can pass in a one of the bokeh number string formats or an instance of one of the bokeh.models.formatters to the colorbar_tick_format
argument in the geoplot
An example of using the string format argument:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()
# pass in a string format to colorbar_tick_format to display the ticks as 10m rather than 1e7
df_states.plot_bokeh(
figsize=(900, 600),
category="POPESTIMATE2017",
simplify_shapes=5000,
colormap="Inferno",
colormap_uselog=True,
colorbar_tick_format="0.0a")
An example of using the bokeh PrintfTickFormatter
:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()
for i in range(8):
df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100
# pass in a PrintfTickFormatter instance colorbar_tick_format to display the ticks with 2 decimal places
df_states.plot_bokeh(
figsize=(900, 600),
category="Delta_Population_2017",
simplify_shapes=5000,
colormap="Inferno",
colorbar_tick_format=PrintfTickFormatter(format="%4.2f"))
The pandas.DataFrame.plot_bokeh API has the following additional keyword arguments:
If you have a Bokeh figure or layout, you can also use the pandas_bokeh.embedded_html function to generate an embeddable HTML representation of the plot. This can be included into any valid HTML (note that this is not possible directly with the HTML generated by the pandas_bokeh.output_file output option, because it includes an HTML header). Let us consider the following simple example:
#Import Pandas and Pandas-Bokeh (if you do not specify an output option, the standard is
#output_file):
import pandas as pd
import pandas_bokeh
#Create DataFrame to Plot:
import numpy as np
x = np.arange(-10, 10, 0.1)
sin = np.sin(x)
cos = np.cos(x)
tan = np.tan(x)
df = pd.DataFrame({"x": x, "sin(x)": sin, "cos(x)": cos, "tan(x)": tan})
#Make Bokeh plot from DataFrame using Pandas-Bokeh. Do not show the plot, but export
#it to an embeddable HTML string:
html_plot = df.plot_bokeh(
kind="line",
x="x",
y=["sin(x)", "cos(x)", "tan(x)"],
xticks=range(-20, 20),
title="Trigonometric functions",
show_figure=False,
return_html=True,
ylim=(-1.5, 1.5))
#Write some HTML and embed the HTML plot below it. For production use, please use
#Templates and the awesome Jinja library.
html = r"""
<script type="text/x-mathjax-config">
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<h1> Trigonometric functions </h1>
<p> The basic trigonometric functions are:</p>
<p>$ sin(x) $</p>
<p>$ cos(x) $</p>
<p>$ tan(x) = \frac{sin(x)}{cos(x)}$</p>
<p>Below is a plot that shows them</p>
""" + html_plot
#Export the HTML string to an external HTML file and show it:
with open("test.html" , "w") as f:
f.write(html)
import webbrowser
webbrowser.open("test.html")
This code will open up a webbrowser and show the following page. As you can see, the interactive Bokeh plot is embedded nicely into the HTML layout. The return_html option is ideal for the use in a templating engine like Jinja.
For single plots that have a number of x axis values or for larger monitors, you can auto scale the figure to the width of the entire jupyter cell by setting the sizing_mode
parameter.
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot_bokeh(kind="bar", figsize=(500, 200), sizing_mode="scale_width")
The figsize
parameter can be used to change the height and width as well as act as a scaling multiplier against the axis that is not being scaled.
To change the formats of numbers in the hovertool, use the number_format keyword argument. For a documentation about the format to pass, have a look at the Bokeh documentation.Let us consider some examples for the number 3.141592653589793:
Format | Output |
---|---|
0 | 3 |
0.000 | 3.141 |
0.00 $ | 3.14 $ |
This number format will be applied to all numeric columns of the hovertool. If you want to make a very custom or complicated hovertool, you should probably use the hovertool_string keyword argument, see e.g. this example. Below, we use the number_format parameter to specify the "Stock Price" format to 2 decimal digits and an additional $ sign.
import numpy as np
#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
"Google": np.random.randn(1000) + 0.2,
"Apple": np.random.randn(1000) + 0.17
},
index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(
kind="line",
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(0, 400),
colormap=["red", "blue"],
number_format="1.00 $")
If you want to suppress the scientific notation for axes, you can use the disable_scientific_axes parameter, which accepts one of "x", "y", "xy":
df = pd.DataFrame({"Animal": ["Mouse", "Rabbit", "Dog", "Tiger", "Elefant", "Wale"],
"Weight [g]": [19, 3000, 40000, 200000, 6000000, 50000000]})
p_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", show_figure=False)
p_non_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", disable_scientific_axes="y", show_figure=False,)
pandas_bokeh.plot_grid([[p_scientific, p_non_scientific]], plot_width = 450)
As shown in the Scatterplot Example, combining plots with plots or other HTML elements is straighforward in Pandas-Bokeh due to the layout capabilities of Bokeh. The easiest way to generate a dashboard layout is using the pandas_bokeh.plot_grid method (which is an extension of bokeh.layouts.gridplot):
import pandas as pd
import numpy as np
import pandas_bokeh
pandas_bokeh.output_notebook()
#Barplot:
data = {
'fruits':
['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh(
kind="bar",
ylabel="Price per Unit [€]",
title="Fruit prices per Year",
show_figure=False)
#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
"Google": np.random.randn(1000) + 0.2,
"Apple": np.random.randn(1000) + 0.17
},
index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
p_line = df.plot_bokeh(
kind="line",
title="Apple vs Google",
xlabel="Date",
ylabel="Stock price [$]",
yticks=[0, 100, 200, 300, 400],
ylim=(0, 400),
colormap=["red", "blue"],
show_figure=False)
#Scatterplot:
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris["data"])
df.columns = iris["feature_names"]
df["species"] = iris["target"]
df["species"] = df["species"].map(dict(zip(range(3), iris["target_names"])))
p_scatter = df.plot_bokeh(
kind="scatter",
x="petal length (cm)",
y="sepal width (cm)",
category="species",
title="Iris DataSet Visualization",
show_figure=False)
#Histogram:
df_hist = pd.DataFrame({
'a': np.random.randn(1000) + 1,
'b': np.random.randn(1000),
'c': np.random.randn(1000) - 1
},
columns=['a', 'b', 'c'])
p_hist = df_hist.plot_bokeh(
kind="hist",
bins=np.arange(-6, 6.5, 0.5),
vertical_xlabel=True,
normed=100,
hovertool=False,
title="Normal distributions",
show_figure=False)
#Make Dashboard with Grid Layout:
pandas_bokeh.plot_grid([[p_line, p_bar],
[p_scatter, p_hist]], plot_width=450)
Using a combination of row and column elements (see also Bokeh Layouts) allow for a very easy general arrangement of elements. An alternative layout to the one above is:
p_line.plot_width = 900
p_hist.plot_width = 900
layout = pandas_bokeh.column(p_line,
pandas_bokeh.row(p_scatter, p_bar),
p_hist)
pandas_bokeh.show(layout)
Release Notes can be found here.
Contributing to Pandas-Bokeh
If you wish to contribute to the development of Pandas-Bokeh
you can follow the instructions on the CONTRIBUTING.md.
Download Details:
Author: PatrikHlobil
Source Code: https://github.com/PatrikHlobil/Pandas-Bokeh
License: MIT License
1657081614
In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation
Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.
Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.
Sheet: A sheet is a single page composed of cells for organizing data.
Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.
Row: A row is a horizontal line represented by a number (1,2, etc.).
Column: A column is a vertical line represented by a capital letter (A, B, etc.).
Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.
pip install openpyxl
We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook()
which creates a new workbook.
from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method
ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position
#Renaming the sheet
ws.title = "Example"
#save the workbook
wb.save(filename = "example.xlsx")
We load the file using the function load_Workbook()
which takes the filename as an argument. The file must be saved in the same working directory.
#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")
#getting sheet names
wb.sheetnames
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']
#getting a particular sheet
sheet1 = wb["sheet2"]
#getting sheet title
sheet1.title
result = 'sheet2'
#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'
#get a cell from the sheet
sheet1["A1"] <
Cell 'Sheet1'.A1 >
#get the cell value
ws["A1"].value 'Segment'
#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)
d.value
10
#looping through each row and column
for x in range(1, 5):
for y in range(1, 5):
print(x, y, ws.cell(row = x, column = y)
.value)
#getting the highest row number
ws.max_row
701
#getting the highest column number
ws.max_column
19
There are two functions for iterating through rows and columns.
Iter_rows() => returns the rows
Iter_cols() => returns the columns {
min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.
Example:
#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
for cell in row:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C3 >
#iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
for cell in col:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.C3 >
To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.
Example:
for row in ws.values:
for value in row:
print(value)
Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.
#creates a new workbook
wb = openpyxl.Workbook()
#saving the workbook
wb.save("new.xlsx")
#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")
#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")
#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']
#deleting a sheet
del wb['sheet 0']
#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']
#checking the sheet value
ws['B2'].value
null
#adding value to cell
ws['B2'] = 367
#checking value
ws['B2'].value
367
We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.
For example:
import openpyxl
from openpyxl
import Workbook
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
ws['A9'] = '=SUM(A2:A8)'
wb.save("new2.xlsx")
The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.
Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().
For example:
Merge cells
#merge cells B2 to C9
ws.merge_cells('B2:C9')
ws['B2'] = "Merged cells"
Adding the above code to the previous example will merge cells as below.
#unmerge cells B2 to C9
ws.unmerge_cells('B2:C9')
The above code will unmerge cells from B2 to C9.
To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.
Example:
import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3
ws.add_image(img, 'A3')
wb.save("new2.xlsx")
Result:
Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:
Example
import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series
wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active
values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
chart.add_data(values)
ws.add_chart(chart, "E3")
wb.save("MyChart.xlsx")
Result
Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.
⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling
📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial
Subscribe: https://www.youtube.com/c/TechWithTim/featured