1625931180
CSS Paint is an API that allows developers to programatically generate and draw graphics where CSS expects an image.
It is part of CSS Houdini, an umbrella term for seven new low-level APIs that expose different parts of the CSS engine and allows developers to extend CSS by hooking into the styling and layout process of a browser’s rendering engine.
It enables developers to write code the browser can parse as CSS, thereby creating new CSS features without waiting for them to be implemented natively in browsers.
Today we will explore two particular APIs, that are part of the CSS Houdini umbrella:
CSS Paint provides us with ability to render graphics using a PaintWorklet, a stripped down version of the
CanvasRenderingContext2D. The major differences are:
With these two omissions in mind, anything you can draw using canvas2d
, you can draw on a regular DOM element using the CSS Paint API. For those of you who have done any graphics using canvas2d
, you should be right at home.
Furthermore, we as developers have the ability to pass CSS variables as inputs to our PaintWorklet
and control its presentation using custom predefined attributes.
This allows for a high degree of customisation, even by design people who may not be necessarily familiar with Javascript.
You can see more examples here and here. And with that out of the way, let’s get to coding!
Let’s create a CSS paintlet, that once loaded, will draw two diagonal lines across the surface of the DOM element we apply it to. The paintlet drawing surface size will adapt to the width and height of the DOM element and we will be able to control the diagonal line thickness by passing in a CSS variable.
#tutorials #css houdini #css paint api #css #api
1625931180
CSS Paint is an API that allows developers to programatically generate and draw graphics where CSS expects an image.
It is part of CSS Houdini, an umbrella term for seven new low-level APIs that expose different parts of the CSS engine and allows developers to extend CSS by hooking into the styling and layout process of a browser’s rendering engine.
It enables developers to write code the browser can parse as CSS, thereby creating new CSS features without waiting for them to be implemented natively in browsers.
Today we will explore two particular APIs, that are part of the CSS Houdini umbrella:
CSS Paint provides us with ability to render graphics using a PaintWorklet, a stripped down version of the
CanvasRenderingContext2D. The major differences are:
With these two omissions in mind, anything you can draw using canvas2d
, you can draw on a regular DOM element using the CSS Paint API. For those of you who have done any graphics using canvas2d
, you should be right at home.
Furthermore, we as developers have the ability to pass CSS variables as inputs to our PaintWorklet
and control its presentation using custom predefined attributes.
This allows for a high degree of customisation, even by design people who may not be necessarily familiar with Javascript.
You can see more examples here and here. And with that out of the way, let’s get to coding!
Let’s create a CSS paintlet, that once loaded, will draw two diagonal lines across the surface of the DOM element we apply it to. The paintlet drawing surface size will adapt to the width and height of the DOM element and we will be able to control the diagonal line thickness by passing in a CSS variable.
#tutorials #css houdini #css paint api #css #api
1595396220
As more and more data is exposed via APIs either as API-first companies or for the explosion of single page apps/JAMStack, API security can no longer be an afterthought. The hard part about APIs is that it provides direct access to large amounts of data while bypassing browser precautions. Instead of worrying about SQL injection and XSS issues, you should be concerned about the bad actor who was able to paginate through all your customer records and their data.
Typical prevention mechanisms like Captchas and browser fingerprinting won’t work since APIs by design need to handle a very large number of API accesses even by a single customer. So where do you start? The first thing is to put yourself in the shoes of a hacker and then instrument your APIs to detect and block common attacks along with unknown unknowns for zero-day exploits. Some of these are on the OWASP Security API list, but not all.
Most APIs provide access to resources that are lists of entities such as /users
or /widgets
. A client such as a browser would typically filter and paginate through this list to limit the number items returned to a client like so:
First Call: GET /items?skip=0&take=10
Second Call: GET /items?skip=10&take=10
However, if that entity has any PII or other information, then a hacker could scrape that endpoint to get a dump of all entities in your database. This could be most dangerous if those entities accidently exposed PII or other sensitive information, but could also be dangerous in providing competitors or others with adoption and usage stats for your business or provide scammers with a way to get large email lists. See how Venmo data was scraped
A naive protection mechanism would be to check the take count and throw an error if greater than 100 or 1000. The problem with this is two-fold:
skip = 0
while True: response = requests.post('https://api.acmeinc.com/widgets?take=10&skip=' + skip), headers={'Authorization': 'Bearer' + ' ' + sys.argv[1]}) print("Fetched 10 items") sleep(randint(100,1000)) skip += 10
To secure against pagination attacks, you should track how many items of a single resource are accessed within a certain time period for each user or API key rather than just at the request level. By tracking API resource access at the user level, you can block a user or API key once they hit a threshold such as “touched 1,000,000 items in a one hour period”. This is dependent on your API use case and can even be dependent on their subscription with you. Like a Captcha, this can slow down the speed that a hacker can exploit your API, like a Captcha if they have to create a new user account manually to create a new API key.
Most APIs are protected by some sort of API key or JWT (JSON Web Token). This provides a natural way to track and protect your API as API security tools can detect abnormal API behavior and block access to an API key automatically. However, hackers will want to outsmart these mechanisms by generating and using a large pool of API keys from a large number of users just like a web hacker would use a large pool of IP addresses to circumvent DDoS protection.
The easiest way to secure against these types of attacks is by requiring a human to sign up for your service and generate API keys. Bot traffic can be prevented with things like Captcha and 2-Factor Authentication. Unless there is a legitimate business case, new users who sign up for your service should not have the ability to generate API keys programmatically. Instead, only trusted customers should have the ability to generate API keys programmatically. Go one step further and ensure any anomaly detection for abnormal behavior is done at the user and account level, not just for each API key.
APIs are used in a way that increases the probability credentials are leaked:
If a key is exposed due to user error, one may think you as the API provider has any blame. However, security is all about reducing surface area and risk. Treat your customer data as if it’s your own and help them by adding guards that prevent accidental key exposure.
The easiest way to prevent key exposure is by leveraging two tokens rather than one. A refresh token is stored as an environment variable and can only be used to generate short lived access tokens. Unlike the refresh token, these short lived tokens can access the resources, but are time limited such as in hours or days.
The customer will store the refresh token with other API keys. Then your SDK will generate access tokens on SDK init or when the last access token expires. If a CURL command gets pasted into a GitHub issue, then a hacker would need to use it within hours reducing the attack vector (unless it was the actual refresh token which is low probability)
APIs open up entirely new business models where customers can access your API platform programmatically. However, this can make DDoS protection tricky. Most DDoS protection is designed to absorb and reject a large number of requests from bad actors during DDoS attacks but still need to let the good ones through. This requires fingerprinting the HTTP requests to check against what looks like bot traffic. This is much harder for API products as all traffic looks like bot traffic and is not coming from a browser where things like cookies are present.
The magical part about APIs is almost every access requires an API Key. If a request doesn’t have an API key, you can automatically reject it which is lightweight on your servers (Ensure authentication is short circuited very early before later middleware like request JSON parsing). So then how do you handle authenticated requests? The easiest is to leverage rate limit counters for each API key such as to handle X requests per minute and reject those above the threshold with a 429 HTTP response.
There are a variety of algorithms to do this such as leaky bucket and fixed window counters.
APIs are no different than web servers when it comes to good server hygiene. Data can be leaked due to misconfigured SSL certificate or allowing non-HTTPS traffic. For modern applications, there is very little reason to accept non-HTTPS requests, but a customer could mistakenly issue a non HTTP request from their application or CURL exposing the API key. APIs do not have the protection of a browser so things like HSTS or redirect to HTTPS offer no protection.
Test your SSL implementation over at Qualys SSL Test or similar tool. You should also block all non-HTTP requests which can be done within your load balancer. You should also remove any HTTP headers scrub any error messages that leak implementation details. If your API is used only by your own apps or can only be accessed server-side, then review Authoritative guide to Cross-Origin Resource Sharing for REST APIs
APIs provide access to dynamic data that’s scoped to each API key. Any caching implementation should have the ability to scope to an API key to prevent cross-pollution. Even if you don’t cache anything in your infrastructure, you could expose your customers to security holes. If a customer with a proxy server was using multiple API keys such as one for development and one for production, then they could see cross-pollinated data.
#api management #api security #api best practices #api providers #security analytics #api management policies #api access tokens #api access #api security risks #api access keys
1601381326
We’ve conducted some initial research into the public APIs of the ASX100 because we regularly have conversations about what others are doing with their APIs and what best practices look like. Being able to point to good local examples and explain what is happening in Australia is a key part of this conversation.
The method used for this initial research was to obtain a list of the ASX100 (as of 18 September 2020). Then work through each company looking at the following:
With regards to how the APIs are shared:
#api #api-development #api-analytics #apis #api-integration #api-testing #api-security #api-gateway
1604399880
I’ve been working with Restful APIs for some time now and one thing that I love to do is to talk about APIs.
So, today I will show you how to build an API using the API-First approach and Design First with OpenAPI Specification.
First thing first, if you don’t know what’s an API-First approach means, it would be nice you stop reading this and check the blog post that I wrote to the Farfetchs blog where I explain everything that you need to know to start an API using API-First.
Before you get your hands dirty, let’s prepare the ground and understand the use case that will be developed.
If you desire to reproduce the examples that will be shown here, you will need some of those items below.
To keep easy to understand, let’s use the Todo List App, it is a very common concept beyond the software development community.
#api #rest-api #openai #api-first-development #api-design #apis #restful-apis #restful-api
1598083582
As more companies realize the benefits of an API-first mindset and treating their APIs as products, there is a growing need for good API product management practices to make a company’s API strategy a reality. However, API product management is a relatively new field with little established knowledge on what is API product management and what a PM should be doing to ensure their API platform is successful.
Many of the current practices of API product management have carried over from other products and platforms like web and mobile, but API products have their own unique set of challenges due to the way they are marketed and used by customers. While it would be rare for a consumer mobile app to have detailed developer docs and a developer relations team, you’ll find these items common among API product-focused companies. A second unique challenge is that APIs are very developer-centric and many times API PMs are engineers themselves. Yet, this can cause an API or developer program to lose empathy for what their customers actually want if good processes are not in place. Just because you’re an engineer, don’t assume your customers will want the same features and use cases that you want.
This guide lays out what is API product management and some of the things you should be doing to be a good product manager.
#api #analytics #apis #product management #api best practices #api platform #api adoption #product managers #api product #api metrics