1593417840
AMP will no longer be a requirement to get web pages featured in Google’s top stories section.
Google is making a change to its ‘top stories’ section in search results by removing AMP as one of the requirements for getting featured.
The ‘top stories’ section appears at the top of Google’s search results when searching for a trending news story.
Since 2016, Google has only included AMP pages in that section. Soon that will no longer be the case.
Google made a major announcement today about an upcoming change to ranking signals.
That change is rolling out next year, at which time Google will also be adjusting the eligibility requirements for its ‘top stories’ section.
In addition, Google will be incorporating the newly announced page experience signal into its ranking criteria for top stories.
“As part of this update, we’ll also incorporate the page experience metrics into our ranking criteria for the Top Stories feature in Search on mobile, and remove the AMP requirement from Top Stories eligibility.”
See more here: Google’s Core Web Vitals to Become Ranking Signals
Removing AMP as an eligibility requirement for top stories is not an indication that Google is any less committed to supporting AMP.
Google notes that it will continue support AMP after this change rolls out, and will continue to link to AMP pages when available.
The top stories section can still include AMP pages, but it won’t only include AMP pages.
Related: Google’s Best Practices for the URL Structure of AMP Pages
Google may already be testing the waters with including more than AMP pages in the top stories section.
At Search Engine Journal we’ve noticed our non-AMP articles routinely appear in the top stories section.
Here’s an example of a regular web page in the top stories section. You can tell it’s non-AMP because it doesn’t have the lightning bolt icon.
#mobile search #news #mobile app
1653465344
This PySpark SQL cheat sheet is your handy companion to Apache Spark DataFrames in Python and includes code samples.
You'll probably already know about Apache Spark, the fast, general and open-source engine for big data processing; It has built-in modules for streaming, SQL, machine learning and graph processing. Spark allows you to speed analytic applications up to 100 times faster compared to other technologies on the market today. Interfacing Spark with Python is easy with PySpark: this Spark Python API exposes the Spark programming model to Python.
Now, it's time to tackle the Spark SQL module, which is meant for structured data processing, and the DataFrame API, which is not only available in Python, but also in Scala, Java, and R.
Without further ado, here's the cheat sheet:
This PySpark SQL cheat sheet covers the basics of working with the Apache Spark DataFrames in Python: from initializing the SparkSession to creating DataFrames, inspecting the data, handling duplicate values, querying, adding, updating or removing columns, grouping, filtering or sorting data. You'll also see that this cheat sheet also on how to run SQL Queries programmatically, how to save your data to parquet and JSON files, and how to stop your SparkSession.
Spark SGlL is Apache Spark's module for working with structured data.
A SparkSession can be used create DataFrame, register DataFrame as tables, execute SGL over tables, cache tables, and read parquet files.
>>> from pyspark.sql import SparkSession
>>> spark a SparkSession \
.builder\
.appName("Python Spark SQL basic example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
>>> from pyspark.sql.types import*
Infer Schema
>>> sc = spark.sparkContext
>>> lines = sc.textFile(''people.txt'')
>>> parts = lines.map(lambda l: l.split(","))
>>> people = parts.map(lambda p: Row(nameap[0],ageaint(p[l])))
>>> peopledf = spark.createDataFrame(people)
Specify Schema
>>> people = parts.map(lambda p: Row(name=p[0],
age=int(p[1].strip())))
>>> schemaString = "name age"
>>> fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
>>> schema = StructType(fields)
>>> spark.createDataFrame(people, schema).show()
From Spark Data Sources
JSON
>>> df = spark.read.json("customer.json")
>>> df.show()
>>> df2 = spark.read.load("people.json", format="json")
Parquet files
>>> df3 = spark.read.load("users.parquet")
TXT files
>>> df4 = spark.read.text("people.txt")
#Filter entries of age, only keep those records of which the values are >24
>>> df.filter(df["age"]>24).show()
>>> df = df.dropDuplicates()
>>> from pyspark.sql import functions as F
Select
>>> df.select("firstName").show() #Show all entries in firstName column
>>> df.select("firstName","lastName") \
.show()
>>> df.select("firstName", #Show all entries in firstName, age and type
"age",
explode("phoneNumber") \
.alias("contactInfo")) \
.select("contactInfo.type",
"firstName",
"age") \
.show()
>>> df.select(df["firstName"],df["age"]+ 1) #Show all entries in firstName and age, .show() add 1 to the entries of age
>>> df.select(df['age'] > 24).show() #Show all entries where age >24
When
>>> df.select("firstName", #Show firstName and 0 or 1 depending on age >30
F.when(df.age > 30, 1) \
.otherwise(0)) \
.show()
>>> df[df.firstName.isin("Jane","Boris")] #Show firstName if in the given options
.collect()
Like
>>> df.select("firstName", #Show firstName, and lastName is TRUE if lastName is like Smith
df.lastName.like("Smith")) \
.show()
Startswith - Endswith
>>> df.select("firstName", #Show firstName, and TRUE if lastName starts with Sm
df.lastName \
.startswith("Sm")) \
.show()
>>> df.select(df.lastName.endswith("th"))\ #Show last names ending in th
.show()
Substring
>>> df.select(df.firstName.substr(1, 3) \ #Return substrings of firstName
.alias("name")) \
.collect()
Between
>>> df.select(df.age.between(22, 24)) \ #Show age: values are TRUE if between 22 and 24
.show()
Adding Columns
>>> df = df.withColumn('city',df.address.city) \
.withColumn('postalCode',df.address.postalCode) \
.withColumn('state',df.address.state) \
.withColumn('streetAddress',df.address.streetAddress) \
.withColumn('telePhoneNumber', explode(df.phoneNumber.number)) \
.withColumn('telePhoneType', explode(df.phoneNumber.type))
Updating Columns
>>> df = df.withColumnRenamed('telePhoneNumber', 'phoneNumber')
Removing Columns
>>> df = df.drop("address", "phoneNumber")
>>> df = df.drop(df.address).drop(df.phoneNumber)
>>> df.na.fill(50).show() #Replace null values
>>> df.na.drop().show() #Return new df omitting rows with null values
>>> df.na \ #Return new df replacing one value with another
.replace(10, 20) \
.show()
>>> df.groupBy("age")\ #Group by age, count the members in the groups
.count() \
.show()
>>> peopledf.sort(peopledf.age.desc()).collect()
>>> df.sort("age", ascending=False).collect()
>>> df.orderBy(["age","city"],ascending=[0,1])\
.collect()
>>> df.repartition(10)\ #df with 10 partitions
.rdd \
.getNumPartitions()
>>> df.coalesce(1).rdd.getNumPartitions() #df with 1 partition
Registering DataFrames as Views
>>> peopledf.createGlobalTempView("people")
>>> df.createTempView("customer")
>>> df.createOrReplaceTempView("customer")
Query Views
>>> df5 = spark.sql("SELECT * FROM customer").show()
>>> peopledf2 = spark.sql("SELECT * FROM global_temp.people")\
.show()
>>> df.dtypes #Return df column names and data types
>>> df.show() #Display the content of df
>>> df.head() #Return first n rows
>>> df.first() #Return first row
>>> df.take(2) #Return the first n rows >>> df.schema Return the schema of df
>>> df.describe().show() #Compute summary statistics >>> df.columns Return the columns of df
>>> df.count() #Count the number of rows in df
>>> df.distinct().count() #Count the number of distinct rows in df
>>> df.printSchema() #Print the schema of df
>>> df.explain() #Print the (logical and physical) plans
Data Structures
>>> rdd1 = df.rdd #Convert df into an RDD
>>> df.toJSON().first() #Convert df into a RDD of string
>>> df.toPandas() #Return the contents of df as Pandas DataFrame
Write & Save to Files
>>> df.select("firstName", "city")\
.write \
.save("nameAndCity.parquet")
>>> df.select("firstName", "age") \
.write \
.save("namesAndAges.json",format="json")
>>> spark.stop()
Have this Cheat Sheet at your fingertips
Original article source at https://www.datacamp.com
#pyspark #cheatsheet #spark #dataframes #python #bigdata
1642496884
In this guide you’ll learn how to create a Responsive Dropdown Menu Bar with Search Field using only HTML & CSS.
To create a responsive dropdown menu bar with search field using only HTML & CSS . First, you need to create two Files one HTML File and another one is CSS File.
1: First, create an HTML file with the name of index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>Dropdown Menu with Search Box | Codequs</title>
<link rel="stylesheet" href="style.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css"/>
</head>
<body>
<div class="wrapper">
<nav>
<input type="checkbox" id="show-search">
<input type="checkbox" id="show-menu">
<label for="show-menu" class="menu-icon"><i class="fas fa-bars"></i></label>
<div class="content">
<div class="logo"><a href="#">CodingNepal</a></div>
<ul class="links">
<li><a href="#">Home</a></li>
<li><a href="#">About</a></li>
<li>
<a href="#" class="desktop-link">Features</a>
<input type="checkbox" id="show-features">
<label for="show-features">Features</label>
<ul>
<li><a href="#">Drop Menu 1</a></li>
<li><a href="#">Drop Menu 2</a></li>
<li><a href="#">Drop Menu 3</a></li>
<li><a href="#">Drop Menu 4</a></li>
</ul>
</li>
<li>
<a href="#" class="desktop-link">Services</a>
<input type="checkbox" id="show-services">
<label for="show-services">Services</label>
<ul>
<li><a href="#">Drop Menu 1</a></li>
<li><a href="#">Drop Menu 2</a></li>
<li><a href="#">Drop Menu 3</a></li>
<li>
<a href="#" class="desktop-link">More Items</a>
<input type="checkbox" id="show-items">
<label for="show-items">More Items</label>
<ul>
<li><a href="#">Sub Menu 1</a></li>
<li><a href="#">Sub Menu 2</a></li>
<li><a href="#">Sub Menu 3</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#">Feedback</a></li>
</ul>
</div>
<label for="show-search" class="search-icon"><i class="fas fa-search"></i></label>
<form action="#" class="search-box">
<input type="text" placeholder="Type Something to Search..." required>
<button type="submit" class="go-icon"><i class="fas fa-long-arrow-alt-right"></i></button>
</form>
</nav>
</div>
<div class="dummy-text">
<h2>Responsive Dropdown Menu Bar with Searchbox</h2>
<h2>using only HTML & CSS - Flexbox</h2>
</div>
</body>
</html>
2: Second, create a CSS file with the name of style.css
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');
*{
margin: 0;
padding: 0;
box-sizing: border-box;
text-decoration: none;
font-family: 'Poppins', sans-serif;
}
.wrapper{
background: #171c24;
position: fixed;
width: 100%;
}
.wrapper nav{
position: relative;
display: flex;
max-width: calc(100% - 200px);
margin: 0 auto;
height: 70px;
align-items: center;
justify-content: space-between;
}
nav .content{
display: flex;
align-items: center;
}
nav .content .links{
margin-left: 80px;
display: flex;
}
.content .logo a{
color: #fff;
font-size: 30px;
font-weight: 600;
}
.content .links li{
list-style: none;
line-height: 70px;
}
.content .links li a,
.content .links li label{
color: #fff;
font-size: 18px;
font-weight: 500;
padding: 9px 17px;
border-radius: 5px;
transition: all 0.3s ease;
}
.content .links li label{
display: none;
}
.content .links li a:hover,
.content .links li label:hover{
background: #323c4e;
}
.wrapper .search-icon,
.wrapper .menu-icon{
color: #fff;
font-size: 18px;
cursor: pointer;
line-height: 70px;
width: 70px;
text-align: center;
}
.wrapper .menu-icon{
display: none;
}
.wrapper #show-search:checked ~ .search-icon i::before{
content: "\f00d";
}
.wrapper .search-box{
position: absolute;
height: 100%;
max-width: calc(100% - 50px);
width: 100%;
opacity: 0;
pointer-events: none;
transition: all 0.3s ease;
}
.wrapper #show-search:checked ~ .search-box{
opacity: 1;
pointer-events: auto;
}
.search-box input{
width: 100%;
height: 100%;
border: none;
outline: none;
font-size: 17px;
color: #fff;
background: #171c24;
padding: 0 100px 0 15px;
}
.search-box input::placeholder{
color: #f2f2f2;
}
.search-box .go-icon{
position: absolute;
right: 10px;
top: 50%;
transform: translateY(-50%);
line-height: 60px;
width: 70px;
background: #171c24;
border: none;
outline: none;
color: #fff;
font-size: 20px;
cursor: pointer;
}
.wrapper input[type="checkbox"]{
display: none;
}
/* Dropdown Menu code start */
.content .links ul{
position: absolute;
background: #171c24;
top: 80px;
z-index: -1;
opacity: 0;
visibility: hidden;
}
.content .links li:hover > ul{
top: 70px;
opacity: 1;
visibility: visible;
transition: all 0.3s ease;
}
.content .links ul li a{
display: block;
width: 100%;
line-height: 30px;
border-radius: 0px!important;
}
.content .links ul ul{
position: absolute;
top: 0;
right: calc(-100% + 8px);
}
.content .links ul li{
position: relative;
}
.content .links ul li:hover ul{
top: 0;
}
/* Responsive code start */
@media screen and (max-width: 1250px){
.wrapper nav{
max-width: 100%;
padding: 0 20px;
}
nav .content .links{
margin-left: 30px;
}
.content .links li a{
padding: 8px 13px;
}
.wrapper .search-box{
max-width: calc(100% - 100px);
}
.wrapper .search-box input{
padding: 0 100px 0 15px;
}
}
@media screen and (max-width: 900px){
.wrapper .menu-icon{
display: block;
}
.wrapper #show-menu:checked ~ .menu-icon i::before{
content: "\f00d";
}
nav .content .links{
display: block;
position: fixed;
background: #14181f;
height: 100%;
width: 100%;
top: 70px;
left: -100%;
margin-left: 0;
max-width: 350px;
overflow-y: auto;
padding-bottom: 100px;
transition: all 0.3s ease;
}
nav #show-menu:checked ~ .content .links{
left: 0%;
}
.content .links li{
margin: 15px 20px;
}
.content .links li a,
.content .links li label{
line-height: 40px;
font-size: 20px;
display: block;
padding: 8px 18px;
cursor: pointer;
}
.content .links li a.desktop-link{
display: none;
}
/* dropdown responsive code start */
.content .links ul,
.content .links ul ul{
position: static;
opacity: 1;
visibility: visible;
background: none;
max-height: 0px;
overflow: hidden;
}
.content .links #show-features:checked ~ ul,
.content .links #show-services:checked ~ ul,
.content .links #show-items:checked ~ ul{
max-height: 100vh;
}
.content .links ul li{
margin: 7px 20px;
}
.content .links ul li a{
font-size: 18px;
line-height: 30px;
border-radius: 5px!important;
}
}
@media screen and (max-width: 400px){
.wrapper nav{
padding: 0 10px;
}
.content .logo a{
font-size: 27px;
}
.wrapper .search-box{
max-width: calc(100% - 70px);
}
.wrapper .search-box .go-icon{
width: 30px;
right: 0;
}
.wrapper .search-box input{
padding-right: 30px;
}
}
.dummy-text{
position: absolute;
top: 50%;
left: 50%;
width: 100%;
z-index: -1;
padding: 0 20px;
text-align: center;
transform: translate(-50%, -50%);
}
.dummy-text h2{
font-size: 45px;
margin: 5px 0;
}
Now you’ve successfully created a Responsive Dropdown Menu Bar with Search Field using only HTML & CSS.
1656151740
Flutter Console Coverage Test
This small dart tools is used to generate Flutter Coverage Test report to console
Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dev_dependencies:
test_cov_console: ^0.2.2
flutter pub get
Running "flutter pub get" in coverage... 0.5s
flutter test --coverage
00:02 +1: All tests passed!
flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
print_cov_constants.dart | 0.00 | 0.00 | 0.00 | no unit testing|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE> The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...> A list of contains string for files without unit testing
to be excluded from report
-l, --line It will print Lines & Uncovered Lines only
Branch & Functions coverage percentage will not be printed
-i, --ignore It will not print any file without unit testing
-m, --multi Report from multiple lcov.info files
-c, --csv Output to CSV file
-o, --output=<CSV-FILE> Full path of output CSV file
If not given, "coverage/test_cov_console.csv" will be used
-t, --total Print only the total coverage
Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM> Print only the whether total coverage is passed MINIMUM value or not
If the value >= MINIMUM, it will print PASSED, otherwise FAILED
Note: it will ignore all other option (if any), except -m
-h, --help Show this help
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
flutter pub run test_cov_console -c --output=coverage/test_coverage.csv
#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""
You can install the package from the command line:
dart pub global activate test_cov_console
The package has the following executables:
$ test_cov_console
Run this command:
With Dart:
$ dart pub add test_cov_console
With Flutter:
$ flutter pub add test_cov_console
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
test_cov_console: ^0.2.2
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:test_cov_console/test_cov_console.dart';
example/lib/main.dart
import 'package:flutter/material.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
// This makes the visual density adapt to the platform that you run
// the app on. For desktop platforms, the controls will be smaller and
// closer together (more dense) than on mobile platforms.
visualDensity: VisualDensity.adaptivePlatformDensity,
),
home: MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
MyHomePage({Key? key, required this.title}) : super(key: key);
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headline4,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console
License: BSD-3-Clause license
1619247660
The liquid-cooled Tensor Processing Units, built to slot into server racks, can deliver up to 100 petaflops of compute.
The liquid-cooled Tensor Processing Units, built to slot into server racks, can deliver up to 100 petaflops of compute.
As the world is gearing towards more automation and AI, the need for quantum computing has also grown exponentially. Quantum computing lies at the intersection of quantum physics and high-end computer technology, and in more than one way, hold the key to our AI-driven future.
Quantum computing requires state-of-the-art tools to perform high-end computing. This is where TPUs come in handy. TPUs or Tensor Processing Units are custom-built ASICs (Application Specific Integrated Circuits) to execute machine learning tasks efficiently. TPUs are specific hardware developed by Google for neural network machine learning, specially customised to Google’s Machine Learning software, Tensorflow.
The liquid-cooled Tensor Processing units, built to slot into server racks, can deliver up to 100 petaflops of compute. It powers Google products like Google Search, Gmail, Google Photos and Google Cloud AI APIs.
#opinions #alphabet #asics #floq #google #google alphabet #google quantum computing #google tensorflow #google tensorflow quantum #google tpu #google tpus #machine learning #quantum computer #quantum computing #quantum computing programming #quantum leap #sandbox #secret development #tensorflow #tpu #tpus
1604472087
Google is promoting AMP as the final solution for Mobile webpage loading speed, should you jump on?
Accelerated Mobile Pages or AMP is the latest technology in web development developed by Google. The technology helps developers build mobile sites that are faster to load. Google has always stated that one of the key ranking factors for a website is it’s loading speed; in plain English, websites that are faster to load are better ranked by Google.
Read in Detail: Do we need Google’s Accelerated Mobile Pages (AMP)?
#accelerated mobile pages #top web developers #web development #amp benefits #amp project #amp