1603371600
Thanks to the internet, now the world knew about the Presidential Debate 2020 that went out of control. All of the major news stations were reporting about how the participants were interrupting and sniping at one another.
I decided to put together an article that focuses on analyzing the words used in the event and see if there are any hidden insights.
This article focuses on finding out the most used words, categorized by each spokesperson, and sentiment analysis of the speeches.
Between:
Incumbent President Donald Trump
Former Vice President Joe Biden (Democratic nominee)
Moderator:
Topics covered:
In total, close to 20,000 words were used in the event. After removing names and common stop words, around 6000 words were left for analysis.
#tokenize
text_df <- text %>%
unnest_tokens(word, Text)
#Remove stop words
my_stop_words <- tibble(
word = c("chris","wallace","trump","donald","joe","biden","vice","president"))
#Prepare stop words tibble
all_stop_words <- stop_words %>%
bind_rows(my_stop_words)
textClean_df <- text_df %>%
anti_join(all_stop_words, by = "word")
#donald-trump #data-analysis #politics #joe-biden #data-science
1594753020
Multiple vulnerabilities in the Citrix Application Delivery Controller (ADC) and Gateway would allow code injection, information disclosure and denial of service, the networking vendor announced Tuesday. Four of the bugs are exploitable by an unauthenticated, remote attacker.
The Citrix products (formerly known as NetScaler ADC and Gateway) are used for application-aware traffic management and secure remote access, respectively, and are installed in at least 80,000 companies in 158 countries, according to a December assessment from Positive Technologies.
Other flaws announced Tuesday also affect Citrix SD-WAN WANOP appliances, models 4000-WO, 4100-WO, 5000-WO and 5100-WO.
Attacks on the management interface of the products could result in system compromise by an unauthenticated user on the management network; or system compromise through cross-site scripting (XSS). Attackers could also create a download link for the device which, if downloaded and then executed by an unauthenticated user on the management network, could result in the compromise of a local computer.
“Customers who have configured their systems in accordance with Citrix recommendations [i.e., to have this interface separated from the network and protected by a firewall] have significantly reduced their risk from attacks to the management interface,” according to the vendor.
Threat actors could also mount attacks on Virtual IPs (VIPs). VIPs, among other things, are used to provide users with a unique IP address for communicating with network resources for applications that do not allow multiple connections or users from the same IP address.
The VIP attacks include denial of service against either the Gateway or Authentication virtual servers by an unauthenticated user; or remote port scanning of the internal network by an authenticated Citrix Gateway user.
“Attackers can only discern whether a TLS connection is possible with the port and cannot communicate further with the end devices,” according to the critical Citrix advisory. “Customers who have not enabled either the Gateway or Authentication virtual servers are not at risk from attacks that are applicable to those servers. Other virtual servers e.g. load balancing and content switching virtual servers are not affected by these issues.”
A final vulnerability has been found in Citrix Gateway Plug-in for Linux that would allow a local logged-on user of a Linux system with that plug-in installed to elevate their privileges to an administrator account on that computer, the company said.
#vulnerabilities #adc #citrix #code injection #critical advisory #cve-2020-8187 #cve-2020-8190 #cve-2020-8191 #cve-2020-8193 #cve-2020-8194 #cve-2020-8195 #cve-2020-8196 #cve-2020-8197 #cve-2020-8198 #cve-2020-8199 #denial of service #gateway #information disclosure #patches #security advisory #security bugs
1650870267
In the previous chapters you've learnt how to select individual elements on a web page. But there are many occasions where you need to access a child, parent or ancestor element. See the JavaScript DOM nodes chapter to understand the logical relationships between the nodes in a DOM tree.
DOM node provides several properties and methods that allow you to navigate or traverse through the tree structure of the DOM and make changes very easily. In the following section we will learn how to navigate up, down, and sideways in the DOM tree using JavaScript.
You can use the firstChild
and lastChild
properties of the DOM node to access the first and last direct child node of a node, respectively. If the node doesn't have any child element, it returns null
.
<div id="main">
<h1 id="title">My Heading</h1>
<p id="hint"><span>This is some text.</span></p>
</div>
<script>
var main = document.getElementById("main");
console.log(main.firstChild.nodeName); // Prints: #text
var hint = document.getElementById("hint");
console.log(hint.firstChild.nodeName); // Prints: SPAN
</script>
Note: The
nodeName
is a read-only property that returns the name of the current node as a string. For example, it returns the tag name for element node,#text
for text node,#comment
for comment node,#document
for document node, and so on.
If you notice the above example, the nodeName
of the first-child node of the main DIV element returns #text instead of H1. Because, whitespace such as spaces, tabs, newlines, etc. are valid characters and they form #text nodes and become a part of the DOM tree. Therefore, since the <div>
tag contains a newline before the <h1>
tag, so it will create a #text node.
To avoid the issue with firstChild
and lastChild
returning #text or #comment nodes, you could alternatively use the firstElementChild
and lastElementChild
properties to return only the first and last element node, respectively. But, it will not work in IE 9 and earlier.
<div id="main">
<h1 id="title">My Heading</h1>
<p id="hint"><span>This is some text.</span></p>
</div>
<script>
var main = document.getElementById("main");
alert(main.firstElementChild.nodeName); // Outputs: H1
main.firstElementChild.style.color = "red";
var hint = document.getElementById("hint");
alert(hint.firstElementChild.nodeName); // Outputs: SPAN
hint.firstElementChild.style.color = "blue";
</script>
Similarly, you can use the childNodes
property to access all child nodes of a given element, where the first child node is assigned index 0. Here's an example:
<div id="main">
<h1 id="title">My Heading</h1>
<p id="hint"><span>This is some text.</span></p>
</div>
<script>
var main = document.getElementById("main");
// First check that the element has child nodes
if(main.hasChildNodes()) {
var nodes = main.childNodes;
// Loop through node list and display node name
for(var i = 0; i < nodes.length; i++) {
alert(nodes[i].nodeName);
}
}
</script>
The childNodes
returns all child nodes, including non-element nodes like text and comment nodes. To get a collection of only elements, use children
property instead.
<div id="main">
<h1 id="title">My Heading</h1>
<p id="hint"><span>This is some text.</span></p>
</div>
<script>
var main = document.getElementById("main");
// First check that the element has child nodes
if(main.hasChildNodes()) {
var nodes = main.children;
// Loop through node list and display node name
for(var i = 0; i < nodes.length; i++) {
alert(nodes[i].nodeName);
}
}
</script>
1598404620
Text Processing mainly requires Natural Language Processing( NLP), which is processing the data in a useful way so that the machine can understand the Human Language with the help of an application or product. Using NLP we can derive some information from the textual data such as sentiment, polarity, etc. which are useful in creating text processing based applications.
Python provides different open-source libraries or modules which are built on top of NLTK and helps in text processing using NLP functions. Different libraries have different functionalities that are used on data to gain meaningful results. One such Library is Pattern.
Pattern is an open-source python library and performs different NLP tasks. It is mostly used for text processing due to various functionalities it provides. Other than text processing Pattern is used for Data Mining i.e we can extract data from various sources such as Twitter, Google, etc. using the data mining functions provided by Pattern.
In this article, we will try and cover the following points:
#developers corner #data mining #text analysis #text analytics #text classification #text dataset #text-based algorithm
1603371600
Thanks to the internet, now the world knew about the Presidential Debate 2020 that went out of control. All of the major news stations were reporting about how the participants were interrupting and sniping at one another.
I decided to put together an article that focuses on analyzing the words used in the event and see if there are any hidden insights.
This article focuses on finding out the most used words, categorized by each spokesperson, and sentiment analysis of the speeches.
Between:
Incumbent President Donald Trump
Former Vice President Joe Biden (Democratic nominee)
Moderator:
Topics covered:
In total, close to 20,000 words were used in the event. After removing names and common stop words, around 6000 words were left for analysis.
#tokenize
text_df <- text %>%
unnest_tokens(word, Text)
#Remove stop words
my_stop_words <- tibble(
word = c("chris","wallace","trump","donald","joe","biden","vice","president"))
#Prepare stop words tibble
all_stop_words <- stop_words %>%
bind_rows(my_stop_words)
textClean_df <- text_df %>%
anti_join(all_stop_words, by = "word")
#donald-trump #data-analysis #politics #joe-biden #data-science
1646044200
偽のニュースデータセットを探索し、ワードクラウドやngramなどのデータ分析を実行し、トランスフォーマーライブラリを使用してPythonで偽のニュース検出器を構築するためにBERTトランスフォーマーを微調整します。
フェイクニュースとは、虚偽または誤解を招くような主張をニュースとして意図的に放送することであり、その発言は意図的に欺瞞的です。
新聞、タブロイド紙、雑誌は、デジタルニュースプラットフォーム、ブログ、ソーシャルメディアフィード、および多数のモバイルニュースアプリケーションに取って代わられています。ニュース組織は、加入者に最新の情報を提供することにより、ソーシャルメディアとモバイルプラットフォームの使用の増加から恩恵を受けました。
消費者は現在、最新ニュースに即座にアクセスできます。これらのデジタルメディアプラットフォームは、世界の他の地域との接続が容易であるために注目を集めており、ユーザーは、民主主義、教育、健康、研究、歴史などのアイデアや討論トピックについて話し合い、共有することができます。デジタルプラットフォーム上の偽のニュースアイテムはますます人気が高まっており、政治的および経済的利益などの利益のために使用されています。
インターネット、ソーシャルメディア、デジタルプラットフォームが広く使用されているため、誰もが不正確で偏った情報を広める可能性があります。フェイクニュースの拡散を防ぐことはほとんど不可能です。虚偽のニュースの配信は急増しています。これは、政治などの1つのセクターに限定されるものではなく、スポーツ、健康、歴史、娯楽、科学と研究などが含まれます。
虚偽のニュースと正確なニュースを認識して区別することが重要です。1つの方法は、専門家にすべての情報を決定して事実を確認させることですが、これには時間がかかり、共有できない専門知識が必要です。次に、機械学習と人工知能ツールを使用して、偽のニュースの識別を自動化できます。
オンラインニュース情報には、さまざまな非構造化形式のデータ(ドキュメント、ビデオ、オーディオなど)が含まれますが、ここではテキスト形式のニュースに焦点を当てます。機械学習と自然言語処理の進歩により、記事やステートメントの誤解を招くような誤った性格を認識できるようになりました。
すべての媒体で偽のニュースを検出するために、いくつかの調査と実験が行われています。
このチュートリアルの主な目標は次のとおりです。
コンテンツの表は次のとおりです。
この作業では、Kaggleのフェイクニュースデータセットを利用して、信頼できないニュース記事をフェイクニュースとして分類しました。次の特性を含む完全なトレーニングデータセットがあります。
id
:ニュース記事の一意のIDtitle
:ニュース記事のタイトルauthor
:ニュース記事の著者text
:記事のテキスト; 不完全である可能性がありますlabel
:1(信頼できないまたは偽物)または0(信頼できる)で示される、信頼できない可能性のあるものとして記事をマークするラベル。これは、特定のニュース記事が信頼できるかどうかを予測する必要があるバイナリ分類の問題です。
Kaggleアカウントをお持ちの場合は、そこにあるWebサイトからデータセットをダウンロードして、ZIPファイルを抽出するだけです。
また、データセットをGoogleドライブにアップロードしました。ここで取得するか、ライブラリを使用してgdown
GoogleColabまたはJupyterノートブックに自動的にダウンロードできます。
$ pip install gdown
# download from Google Drive
$ gdown "https://drive.google.com/uc?id=178f_VkNxccNidap-5-uffXUW475pAuPy&confirm=t"
Downloading...
From: https://drive.google.com/uc?id=178f_VkNxccNidap-5-uffXUW475pAuPy&confirm=t
To: /content/fake-news.zip
100% 48.7M/48.7M [00:00<00:00, 74.6MB/s]
ファイルを解凍します。
$ unzip fake-news.zip
現在の作業ディレクトリには、、、、の3つのファイルが表示されtrain.csv
ます。これはtest.csv
、ほとんどのチュートリアルでsubmit.csv
使用します。train.csv
必要な依存関係のインストール:
$ pip install transformers nltk pandas numpy matplotlib seaborn wordcloud
注:ローカル環境にいる場合は、必ずPyTorch for GPUをインストールしてください。適切にインストールするには、このページにアクセスしてください。
分析に不可欠なライブラリをインポートしましょう。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
NLTKコーパスとモジュールは、標準のNLTKダウンローダーを使用してインストールする必要があります。
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
フェイクニュースデータセットは、さまざまな著者のオリジナルおよび架空の記事のタイトルとテキストで構成されています。データセットをインポートしましょう:
# load the dataset
news_d = pd.read_csv("train.csv")
print("Shape of News data:", news_d.shape)
print("News data columns", news_d.columns)
出力:
Shape of News data: (20800, 5)
News data columns Index(['id', 'title', 'author', 'text', 'label'], dtype='object')
データセットは次のようになります。
# by using df.head(), we can immediately familiarize ourselves with the dataset.
news_d.head()
出力:
id title author text label
0 0 House Dem Aide: We Didn’t Even See Comey’s Let... Darrell Lucus House Dem Aide: We Didn’t Even See Comey’s Let... 1
1 1 FLYNN: Hillary Clinton, Big Woman on Campus - ... Daniel J. Flynn Ever get the feeling your life circles the rou... 0
2 2 Why the Truth Might Get You Fired Consortiumnews.com Why the Truth Might Get You Fired October 29, ... 1
3 3 15 Civilians Killed In Single US Airstrike Hav... Jessica Purkiss Videos 15 Civilians Killed In Single US Airstr... 1
4 4 Iranian woman jailed for fictional unpublished... Howard Portnoy Print \nAn Iranian woman has been sentenced to... 1
20,800行あり、5列あります。text
列のいくつかの統計を見てみましょう:
#Text Word startistics: min.mean, max and interquartile range
txt_length = news_d.text.str.split().str.len()
txt_length.describe()
出力:
count 20761.000000
mean 760.308126
std 869.525988
min 0.000000
25% 269.000000
50% 556.000000
75% 1052.000000
max 24234.000000
Name: text, dtype: float64
title
列の統計:
#Title statistics
title_length = news_d.title.str.split().str.len()
title_length.describe()
出力:
count 20242.000000
mean 12.420709
std 4.098735
min 1.000000
25% 10.000000
50% 13.000000
75% 15.000000
max 72.000000
Name: title, dtype: float64
トレーニングセットとテストセットの統計は次のとおりです。
text
属性の単語数は多く、平均760語で、75%が1000語を超えています。title
属性は平均12語の短いステートメントであり、そのうちの75%は約15語です。私たちの実験は、テキストとタイトルの両方を一緒に使用することです。
両方のラベルのプロットを数える:
sns.countplot(x="label", data=news_d);
print("1: Unreliable")
print("0: Reliable")
print("Distribution of labels:")
print(news_d.label.value_counts());
出力:
1: Unreliable
0: Reliable
Distribution of labels:
1 10413
0 10387
Name: label, dtype: int64
print(round(news_d.label.value_counts(normalize=True),2)*100);
出力:
1 50.0
0 50.0
Name: label, dtype: float64
信頼できない記事(偽物または1)の数は10413であり、信頼できる記事(信頼できるまたは0)の数は10387です。記事のほぼ50%は偽物です。したがって、精度メトリックは、分類器を構築するときにモデルがどの程度うまく機能しているかを測定します。
このセクションでは、データセットをクリーンアップして分析を行います。
# Constants that are used to sanitize the datasets
column_n = ['id', 'title', 'author', 'text', 'label']
remove_c = ['id','author']
categorical_features = []
target_col = ['label']
text_f = ['title', 'text']
# Clean Datasets
import nltk
from nltk.corpus import stopwords
import re
from nltk.stem.porter import PorterStemmer
from collections import Counter
ps = PorterStemmer()
wnl = nltk.stem.WordNetLemmatizer()
stop_words = stopwords.words('english')
stopwords_dict = Counter(stop_words)
# Removed unused clumns
def remove_unused_c(df,column_n=remove_c):
df = df.drop(column_n,axis=1)
return df
# Impute null values with None
def null_process(feature_df):
for col in text_f:
feature_df.loc[feature_df[col].isnull(), col] = "None"
return feature_df
def clean_dataset(df):
# remove unused column
df = remove_unused_c(df)
#impute null values
df = null_process(df)
return df
# Cleaning text from unused characters
def clean_text(text):
text = str(text).replace(r'http[\w:/\.]+', ' ') # removing urls
text = str(text).replace(r'[^\.\w\s]', ' ') # remove everything but characters and punctuation
text = str(text).replace('[^a-zA-Z]', ' ')
text = str(text).replace(r'\s\s+', ' ')
text = text.lower().strip()
#text = ' '.join(text)
return text
## Nltk Preprocessing include:
# Stop words, Stemming and Lemmetization
# For our project we use only Stop word removal
def nltk_preprocess(text):
text = clean_text(text)
wordlist = re.sub(r'[^\w\s]', '', text).split()
#text = ' '.join([word for word in wordlist if word not in stopwords_dict])
#text = [ps.stem(word) for word in wordlist if not word in stopwords_dict]
text = ' '.join([wnl.lemmatize(word) for word in wordlist if word not in stopwords_dict])
return text
上記のコードブロック:
re
正規表現をインポートします。nltk.corpus
ます。単語を扱うとき、特にセマンティクスを検討するときは、、、、など"but"
、ステートメントに重要な意味を追加しない一般的な単語を削除する必要がある場合があります。"can""we"
PorterStemmer
NLTKでステミングワードを実行するために使用されます。ステマーは、形態学的接辞の単語を取り除き、単語の語幹のみを残します。WordNetLemmatizer()
レンマ化のためにNLTKライブラリからインポートします。Lemmatizationはステミングよりもはるかに効果的です。これは、単語の削減を超えて、言語の語彙全体を評価し、語形変化の終わりを削除して、見出語として知られる単語のベースまたは辞書形式を返すことを目的として、形態素解析を単語に適用します。stopwords.words('english')
NLTKでサポートされているすべての英語のストップワードのリストを見てみましょう。remove_unused_c()
関数は、未使用の列を削除するために使用されます。None
関数を使用してnull値を代入しますnull_process()
。clean_dataset()
呼び出します。この関数は、データのクリーニングを担当します。remove_unused_c()null_process()
clean_text()
関数を作成しました。nltk_preprocess()
そのための関数を作成しました。text
およびの前処理title
:
# Perform data cleaning on train and test dataset by calling clean_dataset function
df = clean_dataset(news_d)
# apply preprocessing on text through apply method by calling the function nltk_preprocess
df["text"] = df.text.apply(nltk_preprocess)
# apply preprocessing on title through apply method by calling the function nltk_preprocess
df["title"] = df.title.apply(nltk_preprocess)
# Dataset after cleaning and preprocessing step
df.head()
出力:
title text label
0 house dem aide didnt even see comeys letter ja... house dem aide didnt even see comeys letter ja... 1
1 flynn hillary clinton big woman campus breitbart ever get feeling life circle roundabout rather... 0
2 truth might get fired truth might get fired october 29 2016 tension ... 1
3 15 civilian killed single u airstrike identified video 15 civilian killed single u airstrike id... 1
4 iranian woman jailed fictional unpublished sto... print iranian woman sentenced six year prison ... 1
このセクションでは、以下を実行します。
最も頻繁に使用される単語は、ワードクラウド内で太字の大きなフォントで表示されます。このセクションでは、データセット内のすべての単語に対してワードクラウドを実行します。
WordCloudライブラリのwordcloud()
関数が使用され、ワードgenerate()
クラウドイメージの生成に使用されます。
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
# initialize the word cloud
wordcloud = WordCloud( background_color='black', width=800, height=600)
# generate the word cloud by passing the corpus
text_cloud = wordcloud.generate(' '.join(df['text']))
# plotting the word cloud
plt.figure(figsize=(20,30))
plt.imshow(text_cloud)
plt.axis('off')
plt.show()
出力:
信頼できるニュース専用のワードクラウド:
true_n = ' '.join(df[df['label']==0]['text'])
wc = wordcloud.generate(true_n)
plt.figure(figsize=(20,30))
plt.imshow(wc)
plt.axis('off')
plt.show()
出力:
フェイクニュース専用のワードクラウド:
fake_n = ' '.join(df[df['label']==1]['text'])
wc= wordcloud.generate(fake_n)
plt.figure(figsize=(20,30))
plt.imshow(wc)
plt.axis('off')
plt.show()
出力:
N-gramは、文字または単語のシーケンスです。文字ユニグラムは1つの文字で構成され、バイグラムは一連の2文字で構成されます。同様に、単語N-gramは一連のn個の単語で構成されます。「団結」という言葉は1グラム(ユニグラム)です。「米国」という言葉の組み合わせは2グラム(バイグラム)、「ニューヨーク市」は3グラムです。
信頼できるニュースで最も一般的なバイグラムをプロットしてみましょう。
def plot_top_ngrams(corpus, title, ylabel, xlabel="Number of Occurences", n=2):
"""Utility function to plot top n-grams"""
true_b = (pd.Series(nltk.ngrams(corpus.split(), n)).value_counts())[:20]
true_b.sort_values().plot.barh(color='blue', width=.9, figsize=(12, 8))
plt.title(title)
plt.ylabel(ylabel)
plt.xlabel(xlabel)
plt.show()
plot_top_ngrams(true_n, 'Top 20 Frequently Occuring True news Bigrams', "Bigram", n=2)
フェイクニュースで最も一般的なバイグラム:
plot_top_ngrams(fake_n, 'Top 20 Frequently Occuring Fake news Bigrams', "Bigram", n=2)
信頼できるニュースに関する最も一般的なトリグラム:
plot_top_ngrams(true_n, 'Top 20 Frequently Occuring True news Trigrams', "Trigrams", n=3)
今のフェイクニュースの場合:
plot_top_ngrams(fake_n, 'Top 20 Frequently Occuring Fake news Trigrams', "Trigrams", n=3)
上記のプロットは、両方のクラスがどのように見えるかについてのいくつかのアイデアを示しています。次のセクションでは、トランスフォーマーライブラリを使用して偽のニュース検出器を構築します。
このセクションでは、トランスフォーマーライブラリを使用して偽のニュース分類子を作成するために、BERTチュートリアルの微調整からコードを広範囲に取得します。したがって、より詳細な情報については、元のチュートリアルに進むことができます。
トランスフォーマーをインストールしなかった場合は、次のことを行う必要があります。
$ pip install transformers
必要なライブラリをインポートしましょう:
import torch
from transformers.file_utils import is_tf_available, is_torch_available, is_torch_tpu_available
from transformers import BertTokenizerFast, BertForSequenceClassification
from transformers import Trainer, TrainingArguments
import numpy as np
from sklearn.model_selection import train_test_split
import random
環境を再起動しても、結果を再現可能にしたいと考えています。
def set_seed(seed: int):
"""
Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if
installed).
Args:
seed (:obj:`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
if is_torch_available():
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
if is_tf_available():
import tensorflow as tf
tf.random.set_seed(seed)
set_seed(1)
使用するモデルは次のbert-base-uncased
とおりです。
# the model we gonna train, base uncased BERT
# check text classification models here: https://huggingface.co/models?filter=text-classification
model_name = "bert-base-uncased"
# max sequence length for each document/sentence sample
max_length = 512
トークナイザーのロード:
# load the tokenizer
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
次に、、、および列NaN
から値をクリーンアップしましょう。textauthortitle
news_df = news_d[news_d['text'].notna()]
news_df = news_df[news_df["author"].notna()]
news_df = news_df[news_df["title"].notna()]
次に、データセットをPandasデータフレームとして受け取り、テキストとラベルのトレイン/検証分割をリストとして返す関数を作成します。
def prepare_data(df, test_size=0.2, include_title=True, include_author=True):
texts = []
labels = []
for i in range(len(df)):
text = df["text"].iloc[i]
label = df["label"].iloc[i]
if include_title:
text = df["title"].iloc[i] + " - " + text
if include_author:
text = df["author"].iloc[i] + " : " + text
if text and label in [0, 1]:
texts.append(text)
labels.append(label)
return train_test_split(texts, labels, test_size=test_size)
train_texts, valid_texts, train_labels, valid_labels = prepare_data(news_df)
上記の関数は、データフレームタイプのデータセットを取得し、トレーニングセットと検証セットに分割されたリストとしてそれらを返します。に設定include_title
すると、トレーニングに使用する列に列がTrue
追加されます。に設定すると、テキストにも列が追加されます。titletextinclude_authorTrueauthor
ラベルとテキストの長さが同じであることを確認しましょう。
print(len(train_texts), len(train_labels))
print(len(valid_texts), len(valid_labels))
出力:
14628 14628
3657 3657
BERTトークナイザーを使用して、データセットをトークン化してみましょう。
# tokenize the dataset, truncate when passed `max_length`,
# and pad with 0's when less than `max_length`
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
valid_encodings = tokenizer(valid_texts, truncation=True, padding=True, max_length=max_length)
エンコーディングをPyTorchデータセットに変換します。
class NewsGroupsDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
item["labels"] = torch.tensor([self.labels[idx]])
return item
def __len__(self):
return len(self.labels)
# convert our tokenized data into a torch Dataset
train_dataset = NewsGroupsDataset(train_encodings, train_labels)
valid_dataset = NewsGroupsDataset(valid_encodings, valid_labels)
BertForSequenceClassification
BERTトランスフォーマーモデルのロードに使用します。
# load the model
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
num_labels
二項分類なので2に設定します。以下の関数は、各検証ステップの精度を計算するためのコールバックです。
from sklearn.metrics import accuracy_score
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
# calculate accuracy using sklearn's function
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
}
トレーニングパラメータを初期化しましょう:
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=1, # total number of training epochs
per_device_train_batch_size=10, # batch size per device during training
per_device_eval_batch_size=20, # batch size for evaluation
warmup_steps=100, # number of warmup steps for learning rate scheduler
logging_dir='./logs', # directory for storing logs
load_best_model_at_end=True, # load the best model when finished training (default metric is loss)
# but you can specify `metric_for_best_model` argument to change to accuracy or other metric
logging_steps=200, # log & save weights each logging_steps
save_steps=200,
evaluation_strategy="steps", # evaluate each `logging_steps`
)
を10に設定しましたper_device_train_batch_size
が、GPUが収まる限り高く設定する必要があります。logging_steps
andを200に設定しsave_steps
ます。これは、評価を実行し、200のトレーニングステップごとにモデルの重みを保存することを意味します。
利用可能なトレーニングパラメータの詳細については、このページを確認 してください。
トレーナーをインスタンス化しましょう:
trainer = Trainer(
model=model, # the instantiated Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=valid_dataset, # evaluation dataset
compute_metrics=compute_metrics, # the callback that computes metrics of interest
)
モデルのトレーニング:
# train the model
trainer.train()
GPUによっては、トレーニングが完了するまでに数時間かかります。Colabの無料バージョンを使用している場合は、NVIDIA TeslaK80で1時間かかるはずです。出力は次のとおりです。
***** Running training *****
Num examples = 14628
Num Epochs = 1
Instantaneous batch size per device = 10
Total train batch size (w. parallel, distributed & accumulation) = 10
Gradient Accumulation steps = 1
Total optimization steps = 1463
[1463/1463 41:07, Epoch 1/1]
Step Training Loss Validation Loss Accuracy
200 0.250800 0.100533 0.983867
400 0.027600 0.043009 0.993437
600 0.023400 0.017812 0.997539
800 0.014900 0.030269 0.994258
1000 0.022400 0.012961 0.998086
1200 0.009800 0.010561 0.998633
1400 0.007700 0.010300 0.998633
***** Running Evaluation *****
Num examples = 3657
Batch size = 20
Saving model checkpoint to ./results/checkpoint-200
Configuration saved in ./results/checkpoint-200/config.json
Model weights saved in ./results/checkpoint-200/pytorch_model.bin
<SNIPPED>
***** Running Evaluation *****
Num examples = 3657
Batch size = 20
Saving model checkpoint to ./results/checkpoint-1400
Configuration saved in ./results/checkpoint-1400/config.json
Model weights saved in ./results/checkpoint-1400/pytorch_model.bin
Training completed. Do not forget to share your model on huggingface.co/models =)
Loading best model from ./results/checkpoint-1400 (score: 0.010299865156412125).
TrainOutput(global_step=1463, training_loss=0.04888018785440506, metrics={'train_runtime': 2469.1722, 'train_samples_per_second': 5.924, 'train_steps_per_second': 0.593, 'total_flos': 3848788517806080.0, 'train_loss': 0.04888018785440506, 'epoch': 1.0})
load_best_model_at_end
に設定されているためTrue
、トレーニングが完了すると、最適なウェイトがロードされます。検証セットを使用して評価してみましょう。
# evaluate the current model after training
trainer.evaluate()
出力:
***** Running Evaluation *****
Num examples = 3657
Batch size = 20
[183/183 02:11]
{'epoch': 1.0,
'eval_accuracy': 0.998632759092152,
'eval_loss': 0.010299865156412125,
'eval_runtime': 132.0374,
'eval_samples_per_second': 27.697,
'eval_steps_per_second': 1.386}
モデルとトークナイザーの保存:
# saving the fine tuned model & tokenizer
model_path = "fake-news-bert-base-uncased"
model.save_pretrained(model_path)
tokenizer.save_pretrained(model_path)
上記のセルを実行すると、モデルの構成と重みを含む新しいフォルダーが表示されます。予測を実行するfrom_pretrained()
場合は、モデルをロードしたときに使用した方法を使用するだけで、準備は完了です。
次に、記事のテキストを引数として受け取り、それが偽物であるかどうかを返す関数を作成しましょう。
def get_prediction(text, convert_to_label=False):
# prepare our text into tokenized sequence
inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt").to("cuda")
# perform inference to our model
outputs = model(**inputs)
# get output probabilities by doing softmax
probs = outputs[0].softmax(1)
# executing argmax function to get the candidate label
d = {
0: "reliable",
1: "fake"
}
if convert_to_label:
return d[int(probs.argmax())]
else:
return int(probs.argmax())
モデルが推論を実行するのを見たことがないという例を取り上げ、test.csv
それを確認しました。これは、ニューヨークタイムズの実際の記事です。
real_news = """
Tim Tebow Will Attempt Another Comeback, This Time in Baseball - The New York Times",Daniel Victor,"If at first you don’t succeed, try a different sport. Tim Tebow, who was a Heisman quarterback at the University of Florida but was unable to hold an N. F. L. job, is pursuing a career in Major League Baseball. <SNIPPED>
"""
元のテキストは完全な記事であるため、コピーする場合はColab環境にあります。それをモデルに渡して、結果を見てみましょう。
get_prediction(real_news, convert_to_label=True)
出力:
reliable
このセクションでは、のすべての記事を予測しtest.csv
て提出ファイルを作成し、Kaggleコンテストのテストセットでの正確性を確認します。
# read the test set
test_df = pd.read_csv("test.csv")
# make a copy of the testing set
new_df = test_df.copy()
# add a new column that contains the author, title and article content
new_df["new_text"] = new_df["author"].astype(str) + " : " + new_df["title"].astype(str) + " - " + new_df["text"].astype(str)
# get the prediction of all the test set
new_df["label"] = new_df["new_text"].apply(get_prediction)
# make the submission file
final_df = new_df[["id", "label"]]
final_df.to_csv("submit_final.csv", index=False)
著者、タイトル、記事のテキストを連結した後、get_prediction()
関数を新しい列に渡して列を埋め、メソッドをlabel
使用to_csv()
してKaggleの送信ファイルを作成します。これが私の提出スコアです:
プライベートおよびパブリックのリーダーボードで99.78%および100%の精度が得られました。すごい!
了解しました。チュートリアルは終了です。このページをチェックして、微調整できるさまざまなトレーニングパラメータを確認できます。
微調整用のカスタムのフェイクニュースデータセットがある場合は、サンプルのリストをトークン化ツールに渡すだけで済みます。その後、他のコードを変更することはありません。