Blazor Updates for .NET 6 using Visual Studio 2022

Blazor in .NET 6 is having some significant updates, and we have a look at four changes.

These features are amongst a number of new features that are being applied to Blazor in .NET 6, which is expected to be released in November 2021.

Watch the video where we use a Blazor WebAssembly application, and show you how you can start using these Blazor updates right now!

The updates we feature are as follows:

● Preserving prerendering state
Blazor Wasm applications are not very search-engine friendly. This is because a search bot would have to render the WebAssembly part of the application to grab the application's content.

.NET 5 added new functionality, where we could prerender the application to the server, before being rendered to the client.

However, this became problematic, particularly if an API call was made when the application was rendered. It would have to make the API call twice. Once to the server, and once to the client.

With .NET 6, it allows us to store prerendered data, meaning we only have to make that one API call.

● Querystring component parameters
It is now possible to set a Razor component parameter from the querystring.

With the [SupplyParameterFromQuery] attribute, we can decide whether to set the property's value from the same querystring parameter key as the property name, or set our own querystring parameter key.

● Modify page title from a Razor component
.NET 6 allows us to set the page title from a Razor component.

It also allows us to dynamically update the page title. We display how many notes have been added as part of the title. Then watch, as we add a new note, and see what happens to the notes count tally in the title.

● Error boundaries
Error boundaries allows us to customise an error message around a particular element should an exception arise.

Using the ErrorBoundary tag, we can display the error message that we want to the user.

► Chapters
0:00 Blazor's updates for .NET 6
0:42 Preserving prerendering state
7:53 Querystring component parameters
9:50 Modify page title from a Razor component
11:49 Error boundaries
15:05 How to use Blazor in .NET 6

#blazor  #dotnet  #visualstudio 

What is GEEK

Buddha Community

Blazor Updates for .NET 6 using Visual Studio 2022
Aisu  Joesph

Aisu Joesph

1624386660

.NET News Roundup: .NET 6, MAUI, EF Core 6, Visual Studio 2022

It’s been a busy week for the .NET community with the release of new previews for .NET 6 and its related frameworks (including MAUI), along with the first preview of Visual Studio 2022, new Azure SDK libraries, and more. InfoQ examined these and a number of smaller stories in the .NET ecosystem from the week of June 14th, 2021.

This week’s highlight was the release of new previews for .NET 6 and its related frameworks. .NET 6 Preview 5 includes improvements to a new feature named SDK workloads, which - according to Richard Lander, program manager for the .NET team at Microsoft - is the foundation of the .NET unification vision. The new feature allows developers to add support for new application types (such as mobile and WebAssembly) without increasing the size of the SDK. The improvements to the new feature are the inclusion of two new verbs - list and update - providing a sense of the expected final experience with the general availability release in November. Other features in .NET 6 Preview 5 include NuGet package validationmore Roslyn analyzers, improvements in the Microsoft.Extensions APIs (focused on hosting and dependency injection), WebSocket compression, and much more. Also according to Lander, “.NET 6 Preview 5 is perhaps the biggest preview yet in terms of breadth and quantity of features.” A comprehensive list of all features included in the new preview can be found in the official release post.

The ASP.NET Core framework also received significant improvements in .NET 6 Preview 5. One of the most important features of this release is the reduced Blazor WebAssembly download size with runtime relinking. Now developers can use the .NET WebAssembly tools (the same tools also used for .NET WebAssembly AOT compilation) to relink the runtime and remove unnecessary logic, dramatically reducing the size of the runtime. According to Microsoft, the size reduction is particularly relevant when using invariant globalization mode. Other features in the new release include .NET Hot Reload updates for dotnet watch, faster get and set for HTTP headers, and ASP.NET Core SPA templates updated to Angular 11 and React 17.

#azure #.net #.net maui #visual studio 2019 #.net 6 #visual studio 2022 #devops #news

Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Einar  Hintz

Einar Hintz

1602560783

jQuery Ajax CRUD in ASP.NET Core MVC with Modal Popup

In this article, we’ll discuss how to use jQuery Ajax for ASP.NET Core MVC CRUD Operations using Bootstrap Modal. With jQuery Ajax, we can make HTTP request to controller action methods without reloading the entire page, like a single page application.

To demonstrate CRUD operations – insert, update, delete and retrieve, the project will be dealing with details of a normal bank transaction. GitHub repository for this demo project : https://bit.ly/33KTJAu.

Sub-topics discussed :

  • Form design for insert and update operation.
  • Display forms in modal popup dialog.
  • Form post using jQuery Ajax.
  • Implement MVC CRUD operations with jQuery Ajax.
  • Loading spinner in .NET Core MVC.
  • Prevent direct access to MVC action method.

Create ASP.NET Core MVC Project

In Visual Studio 2019, Go to File > New > Project (Ctrl + Shift + N).

From new project window, Select Asp.Net Core Web Application_._

Image showing how to create ASP.NET Core Web API project in Visual Studio.

Once you provide the project name and location. Select Web Application(Model-View-Controller) and uncheck HTTPS Configuration. Above steps will create a brand new ASP.NET Core MVC project.

Showing project template selection for .NET Core MVC.

Setup a Database

Let’s create a database for this application using Entity Framework Core. For that we’ve to install corresponding NuGet Packages. Right click on project from solution explorer, select Manage NuGet Packages_,_ From browse tab, install following 3 packages.

Showing list of NuGet Packages for Entity Framework Core

Now let’s define DB model class file – /Models/TransactionModel.cs.

public class TransactionModel
{
    [Key]
    public int TransactionId { get; set; }

    [Column(TypeName ="nvarchar(12)")]
    [DisplayName("Account Number")]
    [Required(ErrorMessage ="This Field is required.")]
    [MaxLength(12,ErrorMessage ="Maximum 12 characters only")]
    public string AccountNumber { get; set; }

    [Column(TypeName ="nvarchar(100)")]
    [DisplayName("Beneficiary Name")]
    [Required(ErrorMessage = "This Field is required.")]
    public string BeneficiaryName { get; set; }

    [Column(TypeName ="nvarchar(100)")]
    [DisplayName("Bank Name")]
    [Required(ErrorMessage = "This Field is required.")]
    public string BankName { get; set; }

    [Column(TypeName ="nvarchar(11)")]
    [DisplayName("SWIFT Code")]
    [Required(ErrorMessage = "This Field is required.")]
    [MaxLength(11)]
    public string SWIFTCode { get; set; }

    [DisplayName("Amount")]
    [Required(ErrorMessage = "This Field is required.")]
    public int Amount { get; set; }

    [DisplayFormat(DataFormatString = "{0:MM/dd/yyyy}")]
    public DateTime Date { get; set; }
}

C#Copy

Here we’ve defined model properties for the transaction with proper validation. Now let’s define  DbContextclass for EF Core.

#asp.net core article #asp.net core #add loading spinner in asp.net core #asp.net core crud without reloading #asp.net core jquery ajax form #asp.net core modal dialog #asp.net core mvc crud using jquery ajax #asp.net core mvc with jquery and ajax #asp.net core popup window #bootstrap modal popup in asp.net core mvc. bootstrap modal popup in asp.net core #delete and viewall in asp.net core #jquery ajax - insert #jquery ajax form post #modal popup dialog in asp.net core #no direct access action method #update #validation in modal popup

Cyril  Parisian

Cyril Parisian

1624071009

Visual Studio 2022 Preview 1 now available!

We’re excited to announce that the first preview release of Visual Studio 2022 is ready to install! This is the first release of a 64-bit Visual Studio and we’d love for you to download it, try it out, and join us in shaping the next major release of Visual Studio with your feedback.

Our key goal with this preview is to test and tune the scalability of the new 64-bit platform! With the new 64-bit platform Visual Studio is now capable of scaling to make use of all the system resources you have to improve the reliability of Visual Studio especially when working with complex solutions or using Visual Studio over long periods of time. The 64-bit conversion effort affects every part of Visual Studio, so the scope is much bigger than our usual previews.

We know that you expect quality, stability, and scalability from Visual Studio. And to be totally transparent, the quickest way for us to get there is when real developers like you tell us where we can improve. We really do pay attention to every bug report, suggestion, and upvote! Which you can submit from inside Visual Studio via report a problem.

The Visual Studio 2022 previews can be installed side-by-side with earlier versions of Visual Studio, are available in all three editions (Community, Pro, and Enterprise), and are free to use.

#visual studio #.net #2022 #c# #c++ #preview #visual studio 2022

Hertha  Mayer

Hertha Mayer

1599287948

.NET CLI Templates in Visual Studio

One of the values of using tools for development is the productivity they provide in helping start projects, bootstrapping dependencies, etc. One way that we’ve seen developers and companies deliver these bootstrapping efforts is via templates. Templates serve as a useful tool to start projects and add items to existing projects for .NET developers.

Visual Studio has had templates for a long time and .NET Core’s command-line interface (CLI) has also had the ability to install templates and use them via dotnet new commands. However, if you were an author of a template and wanted to have it available in the CLI as well as Visual Studio you had to do extra work to enable the set of manifest files and installers to make them visible in both places. We’ve seen template authors navigate to ensuring one works better and that sometimes leaves the other without visibility. We wanted to change that.

Starting in Visual Studio 16.8 Preview 2 we’ve enabled a preview feature that you can turn on that enables all templates that are installed via CLI to now show as options in Visual Studio as well. To enable this option visit the Preview Features options in the Tools…Options menu and look for the “Show all .NET Core templates in the New Project dialog” (we’re awesome at naming) checkbox and check it:

Image of Preview Features dialog

After enabling you need to restart the Visual Studio instance to get this capability. After restarting and choosing to create a new project you’ll see some slight differences in the experience. The full list of templates is shown and the names are now being driven from the manifest data in the template’s template.json file.

Image of New Project Dialog with templates listed

Previously as an example we had a special dialog for ASP.NET projects. When the new experience is enabled, this no longer exists, and all project templates use the same infrastructure. This new model reads the options to be exposed to the dialog and renders the UI to enable the selection. Here is the example of an ASP.NET Core web application:

#.net #.net core #asp.net #visual studio #cli #visual studio